

ОКПД2 26.51.70 ТН ВЭД 9032 89 000 0

## Многофункциональный универсальный контроллер «Saturn-PLC»

### Руководство по эксплуатации

Часть 3. Работа в режиме «Отопление, ГВС, вентиляция»

ЕСАН.426469.019РЭЗ Версия ПО 3.5 Редакция от 10.06.2021

# EHC

©МНПП САТУРН, 2021

## СОДЕРЖАНИЕ

| 1 Указания мер безопасности                                                                        | 5              |
|----------------------------------------------------------------------------------------------------|----------------|
| 2 Режимы работы регулятора температуры                                                             | 5              |
| 3 Контур «Отопление»                                                                               | 6              |
| 3.1 Поддержание температуры подающем трубопроводе отопления                                        | 7              |
| 3.2 Ограничение температуры в обратном трубопроводе теплосети                                      | 8              |
| 3.3 Ограничение температуры в подающем трубопроводе теплосети                                      | 8              |
| 3.4 Корректировка температуры подачи контура отопления в зависимости от<br>температуры в помещении | комнатной<br>9 |
| 3.5 Независимая схема отопления                                                                    | 10             |
| 3.6 Схемы подключения «независимое отопление»                                                      | 13             |
| 3.7 Зависимая схема отопления                                                                      | 23             |
| 3.8 Схемы подключения «зависимое отопление»                                                        | 24             |
| 4 Контур «ГВС»                                                                                     | 28             |
| 4.1 Схемы подключения ГВС                                                                          | 30             |
| 5 Контур «Вентиляция»                                                                              | 34             |
| 5.1 Поддержание температуры воздуха в помещении                                                    | 35             |
| 5.2 Ограничение температуры в обратном трубопроводе теплосети                                      | 35             |
| 5.3 Схема подключения «вентиляция»                                                                 | 36             |
| 6 Настройка регулятора температуры                                                                 | 42             |
| 6.1 Пункт меню «Выбор схемы»                                                                       | 43             |
| 6.2 Пункт меню «Параметры»                                                                         | 45             |
| 6.2.1 Пункт меню «Уставка температуры»                                                             | 46             |
| 6.2.2 Пункт меню «Температурный график»                                                            | 47             |
| 6.2.3 Пункт меню «Коррекция графика»                                                               | 48             |
| 6.2.4 Пункт меню «Коррекция по нерабочим дням»                                                     | 49             |
| 6.2.5 Пункт меню «Коррекция по дням недели»                                                        | 49             |
| 6.2.6 Пункт меню «Влияние обратки»                                                                 | 50             |
| 6.2.7 Пункт меню «Ограничение по подаче TC»                                                        | 51             |
| 6.2.8 Пункт меню «Влияние Т комнатной»                                                             | 53             |
| 6.2.9 Пункт меню «Приоритет ГВС»                                                                   | 55             |
| 6.3 Пункт меню «Управление клапаном»                                                               | 57             |

|     | 6.3.1 Пункт меню «Коэффициент k»                   | 57 |
|-----|----------------------------------------------------|----|
|     | 6.3.2 Пункт меню «Интервал управления»             | 58 |
|     | 6.3.3 Пункт меню «Число шагов»                     | 58 |
|     | 6.3.4 Пункт меню «Полное время хода клапана»       | 59 |
|     | 6.3.5 Пункт меню «Юстировка клапана»               | 59 |
| (   | 5.4 Пункт меню «Управление насосами»               | 60 |
|     | 6.4.1 Пункт меню «Вход управления»                 | 62 |
|     | 6.4.2 Пункт меню «Контроль работы»                 | 62 |
|     | 6.4.3 Пункт меню «Время разгона»                   | 62 |
|     | 6.4.4 Пункт меню «Время торможения»                | 63 |
|     | 6.4.5 Пункт меню «Пауза после аварии»              | 63 |
|     | 6.4.6 Пункт меню «Число попыток»                   | 63 |
|     | 6.4.7 Пункт меню «Работа с чередованием»           | 64 |
|     | 6.4.8 Пункт меню «Интервал чередования»            | 64 |
|     | 6.4.8 Пункт меню «Не показывать отключенный насос» | 65 |
| (   | 5.5 Пункт меню «Управление подпиткой»              | 65 |
|     | 6.5.1 Пункт меню «Источник управления»             | 66 |
|     | 6.5.2 Пункт меню «Максимальная длительность»       | 66 |
|     | 6.5.3 Пункт меню «Включение подпитки»              | 67 |
|     | 6.5.4 Пункт меню «Отключение подпитки»             | 67 |
| (   | 5.6 Пункт меню «Управление вентилятором»           | 68 |
|     | 6.6.1 Пункт меню «Время разгона»                   | 68 |
|     | 6.6.2 Пункт меню «Время торможения»                | 68 |
|     | 6.6.3 Пункт меню «Пауза после аварии»              | 69 |
|     | 6.6.4 Пункт меню «Число попыток»                   | 69 |
| (   | 5.7 Пункт меню «Заводские установки»               | 70 |
| 7 X | {урнал событий                                     | 70 |
| -   | 7.1 Пункт меню «Текущие события»                   | 70 |
| 8 C | ервисное меню                                      | 74 |
| 9 P | абочий календарь                                   | 77 |
| 10  | Настройки контроллера                              | 79 |
|     | 10.1.1 Пункт меню «Установить»                     | 80 |
|     | 10.1.2 Пункт меню «Получить автоматически»         | 81 |
|     | 10.1.3 Пункт меню «NTP сервер»                     | 81 |
|     | 10.1.4 Пункт меню «Часовой пояс»                   | 81 |

| 10.2.1 Пункты меню «Т1 – Т5»                                     | 82  |
|------------------------------------------------------------------|-----|
| 10.2.2 Пункт меню «Al1 – Al2»                                    | 85  |
| 10.3.1 Пункт меню «Получить IP автоматически»                    | 88  |
| 10.3.2 Пункт меню «IP адрес»                                     | 89  |
| 10.3.3 Пункт меню «Маска подсети»                                | 89  |
| 10.3.4 Пункт меню «Основной шлюз»                                | 90  |
| 10.3.5 Пункт меню «DNS сервер»                                   | 90  |
| 10.4.1 Пункт меню «Адрес Modbus»                                 | 91  |
| 10.4.2 Пункт меню «Скорость RS485»                               | 91  |
| 10.7.1 Пункт меню «Пароль на вход в меню»                        | 96  |
| 10.7.2 Пункт меню «Яркость экрана»                               | 96  |
| 10.7.3 Пункт меню «Снижать яркость экрана»                       | 97  |
| 10.7.4 Пункт меню «Звук при нажатии»                             | 97  |
| 11 Порядок работы                                                | 99  |
| 11.1 Основной экран                                              | 99  |
| 11.2 Просмотр состояния интерфейсов, входных и выходных сигналов | 100 |
| 11.3 Просмотр состояния входных и выходных сигналов              | 101 |
| 12 ОТОПЛЕНИЕ                                                     |     |
| 12.1 Режим – Независимое отопление (1)                           | 104 |
| 12.2 Режим - Независимое отопление (2)                           |     |
| 12.3 Режим – Независимое отопление (3)                           | 109 |
| 12.4 Режим - Независимое отопление (4)                           | 110 |
| 12.5 Режим - Независимое отопление (5)                           | 110 |
| 12.6 Режим – Зависимое отопление (1)                             | 113 |
| 12.7 Режим – Зависимое отопление (2)                             | 114 |
| 13 ГОРЯЧЕЕ ВОДОСНАБЖЕНИЕ                                         | 115 |
| 13.1 Режим – Горячее водоснабжение (1)                           | 115 |
| 13.2 Режим – Горячее водоснабжение (2)                           | 118 |
| 14 ВЕНТИЛЯЦИЯ                                                    | 119 |
| 14.1 Режим – Вентиляция                                          | 119 |
| Приложение А. Режимы работы каналов регулирования                | 123 |
| Приложение Б. Настройка управления регулирующим клапаном         | 123 |

Настоящая часть 3 руководства по эксплуатации содержит сведения для правильной настройки режимов работы и работы многофункционального универсального контроллера «Saturn-PLC» (далее - контроллер) в режиме «Отопление, ГВС, вентиляция» с встроенном программным обеспечением **версии 3.5** и выше.

### 1 Указания мер безопасности

**Внимание!** Контроллер содержит цепи с опасным для жизни напряжением 220 В, 50 Гц.

Подключение разъемов контроллера производить только при снятом напряжении питания. Запрещается работа со снятой крышкой корпуса.

Замену встроенного элемента питания контроллера производить только при снятом напряжении питания.

При пусконаладочных работах и эксплуатации необходимо руководствоваться следующими документами:

- «Правила устройства электроустановок» (ПУЭ);

- «Правила по охране труда при эксплуатации электроустановок» (ПОТЭУ);

- «Правила технической эксплуатации электроустановок потребителей»;

- действующими на предприятии инструкциями по охране труда, технике безопасности и пожарной безопасности.

К эксплуатации контроллера допускаются лица, имеющие необходимую квалификацию, изучившие руководство по эксплуатации, прошедшие инструктаж по технике безопасности на рабочем месте.

## 2 Режимы работы регулятора температуры

Контроллер содержит два независимых канала регулирования температуры (два независимых регулятора). Каждый из каналов регулятора может работать как в режиме «Отопление», так и «ГВС», так и «Вентиляция» (таблица 1).

| Номер<br>схемы | Название режима работы             | Краткое описание                                                                                 |
|----------------|------------------------------------|--------------------------------------------------------------------------------------------------|
| 1              | Независимая система<br>отопления 1 | Закрытая система отопления - независимая схема подключения с подпиткой, 2 циркуляционных насоса  |
| 2              | Независимая система<br>отопления 2 | Закрытая система отопления - независимая схема подключения с подпиткой, 1 циркуляционный насос   |
| 3              | Независимая система<br>отопления 3 | Закрытая система отопления - независимая схема подключения без подпитки, 2 циркуляционных насоса |
| 4              | Независимая система<br>отопления 4 | Закрытая система отопления - независимая схема подключения без подпитки, 1 циркуляционный насос  |

Таблица 1 - Режимы работы регулятора температуры

| 5  | Независимая система<br>отопления 5 | Закрытая система отопления - независимая схема подключения с 2 насосами подпитки, 2 циркуля-<br>ционных насоса |
|----|------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 6  | Зависимая система отоп-<br>ления 1 | Открытая система отопления - зависимая схема подключения, 2 циркуляционных насоса                              |
| 7  | Зависимая система отоп-<br>ления 2 | Открытая система отопления - зависимая схема подключения, 1 циркуляционный насос                               |
| 8  | Горячее водоснабжение<br>ГВС 1     | Схема ГВС, 2 циркуляционных насоса                                                                             |
| 9  | Горячее водоснабжение<br>ГВС 2     | Схема ГВС, 1 циркуляционный насос                                                                              |
| 10 | Вентиляция                         | Схема вентиляции                                                                                               |

Имеются некоторые ограничения на одновременное использование режимов работы канала 1 и канала 2 (см. приложение А).

## 3 Контур «Отопление»

Контроллер в режиме «Отопление» поддерживает работу для схем подключения «Независимое отопление» (рисунок 1) и «Зависимое отопление» (рисунок 2).



Типовая схема контура "Независимое отопление"

Рисунок 1 – Пример схемы «Независимое отопление»

Типовая схема контура "Зависимое отопление"



Рисунок 2 – Пример схемы «Зависимое отопление»

### 3.1 Поддержание температуры подающем трубопроводе отопления

Регулятор в контуре «Отопление» производит автоматическое поддержание температуры воды в контуре отопления Тп (температуры подачи) в соответствии с температурным (погодным) графиком при помощи изменения положения задвижки Кр с электроуправлением.

Температурный график Tn=f(Tнв) является функцией, описывающей зависимость температуры подачи отопления Tn от температуры наружного воздуха Tнв. График задается пятью точками. Между точками график линейный (рисунок 3).



Рисунок 3 - Температурный график Тп=f(Тнв)

График регулирования температуры будет автоматически изменён при включении коррекции: сдвиг верх или вниз на заданное постоянное значение температуры в зависимости от времени (постоянно, по нерабочим дням, по дням недели, по дню и ночи), а также при включении ограничения температуры в обратном трубопроводе теплосети или ограничении температуры в подающем трубопроводе теплосети или при коррекции температуры в зависимости от комнатной температуры.

## 3.2 Ограничение температуры в обратном трубопроводе теплосети

Регулятор может выполнять функцию ограничения температуры Ттсо в обратном трубопроводе теплосети. Это необходимо для исключения перегрева обратной сетевой воды.

Ограничение температуры воды, возвращаемой в тепловую сеть, производится по графику максимально допустимой температуры Trco=f(Tнв) в обратном трубопроводе. График задается пятью точками. Между точками график линейный (рисунок 4).



Рисунок 4 - Температурный график Ттсо =f(Тнв)

При превышении температуры Ттсо над заданным графиком максимальной температуры в обратном трубопроводе Ттсо=f(Тнв), регулятор переключается на ее регулирование с целью недопущения перегрева воды, возвращаемой в тепловую сеть. В этом случае, новое значение уставки температуры подачи Тп вычисляется как:

Тп = Тп – (Ттсо- f(Тнв))\*К

где Тп – уставка температуры подачи отопления по графику Tn=f(Tнв);

Ттсо – текущее значение температуры обратной сетевой воды;

f(Tнв) — значение максимальной температуры в обратном трубопроводе (по графику).

Коэффициент К определяет степень влияния превышения температуры в обратном трубопроводе теплосети на уставку Тп температуры подачи. При значении К равным нулю ограничение температуры в обратном трубопроводе не производится.

## 3.3 Ограничение температуры в подающем трубопроводе теплосети

Регулятор может выполнять функцию ограничения температуры Ттсп в подающем трубопроводе теплосети. Это позволяет ограничивать отбор тепла потребителем от теплосети. Ограничение температуры воды, подаваемой из тепловой сети, производится по графику максимально допустимой температуры в подающем трубопроводе отопления Tn max=f(Tтсп). График задается пятью точками. Между точками график линейный (рисунок 5).



Рисунок 5 - Температурный график Тп max=f(Ттсп)

В этом случае, новое значение уставки температуры подачи Тп вычисляется как минимальное значение максимально допустимой температуры Тп max (по графику) и заданной уставки Тп (по графику):

Тп = MIN (Тп, f(Ттсп))

где Тп – уставка температуры подачи отопления по графику Tn=f(Tнв);

f(Tтсп) — значение максимально допустимой температуры подачи по графику Tn max=f(Tтсп).

## 3.4 Корректировка температуры подачи контура отопления в зависимости от комнатной температуры в помещении

Также регулятор может выполнять функцию корректировки температуры подачи Тп в зависимости от комнатной температуры в помещении, где установлен дополнительный датчик температуры Тк. Эта функция работает только для режимов «Независимое отопление (3)», «Независимое отопление (4)», «Зависимое отопление (1)», «Зависимое отопление (2)».

Регулятор, если эта функция включена, осуществляет управление регулирующим клапаном Кр с целью поддержания температуры в помещени, новое значение уставки температуры подачи Тп вычисляется как:

Тп = Тп + (Ту- Тк)\*К

где Тп – уставка температуры подачи отопления по графику Tn=f(Tнв);

Ту – уставка комнатной температуры;

Тк – измеренное значение комнатной температуры.

Коэффициент влияния К определяет степень влияния значения комнатной температуры Тк на управление задвижкой Кр. При значении К равным нулю регулирование температуры по датчику Тк не производится.

Внимание! Если осуществляется корректировка температуры по Тк, то ограничение температуры в подающем трубопроводе теплосети не осуществляется и наоборот, т.к. датчики Ттсп и Тк подключаются к одному и тому же входу Т5 контроллера.

### 3.5 Независимая схема отопления

Функциональная схема контура отопления для независимой схемы подключения показана на рисунке 6. Контуры теплосети и потребителя разделены, нагрев воды происходит за счет теплообменника. Контур подпитки служит для поддержания номинального давления воды в системе отопления потребителя по показаниям датчика давления Ро или реле давления PS в обратном трубопроводе отопления. Регулирование температуры подачи Tn происходит за счет изменения сечения регулирующего клапана Кр, установленного в контуре теплосети, таким образом, чтобы значение температуры подачи Tn приближалось к заданной уставке.





Рисунок 6 - Функциональная схема контура отопления для независимой схемы

Этой схеме соответствуют режимы работы регулятора 1 - 5:

| Наименование режима               | Состав оборудования                             |
|-----------------------------------|-------------------------------------------------|
| Независимое отопление 1 (схема 1) | Датчики температуры:<br>- наружного воздуха Тнв |
| dP_HL                             | - теплосети обратной Ттсо                       |
|                                   | - подачи отопления Тп                           |
|                                   | Датчик давления Ро или реле давления<br>PS      |
|                                   | Датчик перепада давления dРнц                   |
|                                   | Циркуляционные насосы Нц1, Нц2                  |
|                                   | Насос подпитки Нп, клапан подпитки              |
|                                   | Кп                                              |
|                                   | Регулирующий клапан Кр                          |
| Независимое отопление 2 (схема 2) | Датчики температуры:                            |
|                                   | - наружного воздуха Тнв                         |
|                                   | - теплосети обратной Ттсо                       |
|                                   | - подачи отопления Тп                           |
|                                   | Датчик давления Ро или реле давления            |
|                                   | PS                                              |

Таблица 2 - Независимые схемы отопления



Кнопка «Пуск» служит для запуска работы регулятора. Замыкание контактов кнопки (на вход поступает лог.0) запускает работу регулятора, размыкание контактов – останавливает.

К аналоговым входам T1-T5 регулятора подключаются термопреобразователи сопротивления, предназначенные для измерения: Тнв – температуры наружного воздуха;

Ттсо – температуры обратной воды в теплосети;

Ттсп – температуры прямой воды в теплосети;

Тп – измерения температуры воды в системе отопления у потребителя;

Тк – температуры воздуха внутри помещения.

Сигналы от термопреобразователей сопротивления T1-T5, прошедшие аппаратную фильтрацию от помех, поступают на регулятор температуры, реализованный программноаппаратным способом на микроконтроллере. Регулятор сравнивает измеренное значение температуры Tn в контуре отопления с уставкой Туст, заданной по температурному графику относительно температуры наружного воздуха Tнв, и формирует сигналы управления (реле или аналоговый) для клапана Кр с целью уменьшения их рассогласования.

Также в режиме «Отопление» возможно ограничение температуры в обратном трубопроводе теплосети в соответствии с графиком по температуре наружного воздуха Trco=f(Tнв), если коэффициент влияния не равен нулю. При превышении температуры Trco над заданным графиком максимальной температуры в обратном трубопроводе регулятор переключается на ее регулирование с целью недопущения перегрева воды, возвращаемой в тепловую сеть, при этом Tn пропорционально уменьшается.

Если включен режим ограничения комнатной температуры и соответствующий коэффициент влияния не равен нулю, что сигнал управления Кр корректируется с учетом комнатной температуры Тк. т.е. происходит поддержание заданной температуры внутри помещения по показаниям датчика Тк.

Регулятор формирует дискретные управляющие сигналы (открыть, закрыть) для регулирующего клапана Кр с дискретным управлением при помощи выходных каскадов вида «электронное реле». Одновременно регулятор на своем выходе АО цифро-аналогового преобразователя формирует сигнал напряжения (0-10) В для регулирующего клапана Кр с непрерывным управлением.

Регулирующей клапан Кр со слаботочным дискретным управлением подключается к регулятору к двум релейным выходам контроллера непосредственно. Чем больше время, в течение которого контакты реле замкнуты, тем на больший угол (ход штока) повернется задвижка. Поддержание температуры Тп происходит за счет изменения потока теплоносителя посредством изменения сечения клапана Кр. Управляющее воздействие подается на клапан Кр с заданным периодом управления. Во втором случае на клапан подается непрерывный сигнал с выхода АО контроллера: 0В – соответствует закрытому состоянию, 10 В – открытому клапану.

Контур «Отопление» содержит два циркуляционных насоса Hu1 и Hu2, включенных параллельно. Для разрешения работы соответствующего насоса следует замкнуть цепь «Автомат/авария Hu1», «Автомат/авария Hu1» на общий провод. Регулятор при помощи магнитных контакторов соответствующей мощности управляет включением циркуляционных насосов Hu1 и Hu2. Насосы работают попеременно, переключаясь через заданное в настройках время, например, раз в сутки. Во время работы контролируется работоспособность насоса при помощи датчика перепада давления dPнц или датчика сухого хода PS, формирующего на своих выходах двоичный сигнал, который поступает на дискретный вход контроллера. В случае отсутствия необходимого значения перепада давления «вход-выход» на включенном насосе регулятор его отключает, формирует сигнал «Авария», индицирует аварию на табло. В некоторых случаях вместо датчика перепада давления используют датчик сухого хода на входе насоса.

Для независимой схемы отопления регулятор контролирует давление воды в обратном контуре отопления по датчику давления Ро (или реле давления) и, в случае падения давления ниже заданного уровня, включает одновременно клапан Кп и насос подпитки Нп или Нп1, Нп2 (схема 5). Контур подпитки отключается при достижении давлением воды Ро заданного уровня. Включение насосов подпитки Нп1 и Нп2 (схема 5) происходит с чередованием, в каждый момент включается насос с меньшей наработкой.

Функциональная схема контура отопления с двумя насосами подпитки для независимой схемы подключения и показана на рисунке 7.



Схема контура "Независимое отопление" с двумя насосами подпитки

Рисунок 7 - Функциональная схема контура отопления с двумя насосами подпитки для независимой схемы

Эта схема отличается тем, что в контуре подпитки установлены два насоса Hn1 и Hn2, каждый из которых управляется отдельно. Также в контуре подпитки имеется датчик сухого хода PS на входе этих насосов для их защиты.

### 3.6 Схемы подключения «независимое отопление»

Регулятор поддерживает работу для независимой (схемы 1, 2, 3, 4) или зависимой (схемы 5, 6) схеме присоединения потребителя к тепловой сети, как с контуром подпитки (схемы 1, 2, 5), так из без контура подпитки (схемы 3, 4). Возможна работа с двумя насосами подпитки (схема 5). Так как регулятор имеет два самостоятельных канала управления, то контуром «Отопление» могут быть как первый, так и второй или оба одновременно.

Функциональная схема контроллера в режиме «Отопление» (схемы 1-4) показана на рисунке 8. Схема подключения датчиков и исполнительных механизмов показана условно.

| На схеме использованы сокращения: |                                                                                                             |  |  |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|
| Тнв                               | – датчик температуры наружного воздуха;                                                                     |  |  |
| Ттсо                              | – датчик температуры теплосети обратный;                                                                    |  |  |
| Тп                                | – датчик температуры подачи;                                                                                |  |  |
| Тк                                | — датчик температуры внутри помещения (схемы 3, 4);                                                         |  |  |
| Ттсп                              | – датчик температуры подачи теплосети;                                                                      |  |  |
| dРн                               | — реле перепада давления циркуляционных насосов или температурное<br>реле электродвигателя;                 |  |  |
| Ро                                | — аналоговый датчик давления, используется для включения подпитки,<br>если не используется реле давления;   |  |  |
| PS                                | — реле давления, используется для включения подпитки, если не исполь-<br>зуется аналоговый датчик давления; |  |  |
| Кр                                | — задвижка с электроуправлением (варианты с дискретными и аналого-<br>выми 0-10В управляющими сигналами);   |  |  |
| Нц1, Нц2                          | — циркуляционные насосы;                                                                                    |  |  |
| Нп                                | – насос подпитки (схемы 1, 2);                                                                              |  |  |
| Нп1, Нп2                          | – насосы подпитки (схема 5);                                                                                |  |  |
| Кп                                | – электрический клапан включения контура подпитки.                                                          |  |  |



Рисунок 8 - Схема подключения датчиков и исполнительных механизмов в режиме «Отопление» (схемы 1-4) для канала регулирования №1

Таблица 3 - Канал регулирования № 1: Независимое отопление, схемы 1-4

| Вход<br>контрол-<br>лера | Вход<br>/выход | Название сигнала                | Описание                                                                                                                                      |
|--------------------------|----------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| T1                       | вход           | Т уличная                       | <ul> <li>аналоговый вход для подключения датчика</li> <li>температуры наружного воздуха</li> </ul>                                            |
| Т2                       | вход           | Т обратка ТС                    | <ul> <li>аналоговый вход для подключения датчика</li> <li>температуры обратки теплосети</li> </ul>                                            |
| тз                       | вход           | СО1 Т подачи                    | - аналоговый вход для подключения датчика температуры подачи системы отопления канала 1                                                       |
| Т5                       | вход           | СО1 Т комнатная<br>/Т подача ТС | <ul> <li>аналоговый вход для подключения датчика<br/>комнатной температуры или датчика подачи<br/>теплосети канала 1</li> </ul>               |
| DI1                      | вход           | СО1 dP насоса /<br>Сухой ход    | <ul> <li>дискретный вход для подключения датчика<br/>перепада давления насоса Нц или датчика су-<br/>хого хода канала 1</li> </ul>            |
| DI3                      | вход           | СО 1Авт / Авария<br>Нц 1        | <ul> <li>дискретный вход сигналов разрешения ра-<br/>боты насоса Нц1 канала 1</li> </ul>                                                      |
| DI4                      | вход           | СО 1Авт / Авария<br>Нц 2        | <ul> <li>дискретный вход сигналов разрешения ра-<br/>боты насоса Нц2 канала 1</li> </ul>                                                      |
| DI7                      | вход           | СО1 Старт регу-<br>лир.         | <ul> <li>– дискретный вход для кнопки «Пуск» регуля-<br/>тора канала 1</li> </ul>                                                             |
| AI1                      | вход           | СО1 Р обратки                   | - аналоговый вход (0-10)В или (0-20)мА для под-<br>ключения датчика давления в обратной трубе<br>системы отопления канал 1                    |
| A01                      | выход          | СО1 клапан                      | <ul> <li>аналоговый выход (0-10)В для управления</li> <li>электроклапаном канала 1</li> </ul>                                                 |
| D01                      | выход          | СО1 Откр. клапан                | – выход реле «открыть» задвижку клапана Кр<br>канала 1                                                                                        |
| DO2                      | выход          | СО1 Закр. клапан                | – выход реле «закрыть» задвижку клапана Кр<br>канала 1                                                                                        |
| DO5                      | выход          | СО1 Включить Нц1                | — выход реле «включить» насос Нц 1 канала 1                                                                                                   |
| DO6                      | выход          | СО1 Включить Нц2                | — выход реле «включить» насос Нц 2 канала 1                                                                                                   |
| DO7                      | выход          | СО1 Вкл. подпитку               | — выход реле «включить» клапан подпитки Кп и<br>насос подпитки Нп канала 1                                                                    |
| DO11                     | выход          | Авария                          | <ul> <li>выход сигнала общей аварии (срабатывания<br/>реле перепада давления, сухого хода, отказа<br/>датчика температуры и проч.)</li> </ul> |



Рисунок 9 - Схема подключения датчиков и исполнительных механизмов в режиме «Отопление» (схемы 1-4) для канала регулирования №2

Таблица 4 - Канал регулирования №2: Независимое отопление, схемы 1 - 4

| Taenaqa T                | nanan pe       |                                 |                                                                                                                                               |
|--------------------------|----------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Вход<br>контрол-<br>лера | Вход<br>/выход | Название сигнала                | Описание                                                                                                                                      |
| Т1                       | вход           | Т уличная                       | <ul> <li>аналоговый вход для подключения датчика</li> <li>температуры наружного воздуха</li> </ul>                                            |
| Т2                       | вход           | Т обратка ТС                    | <ul> <li>аналоговый вход для подключения датчика<br/>температуры обратки теплосети</li> </ul>                                                 |
| Т4                       | вход           | СО2 Т подачи                    | - аналоговый вход для подключения датчика температуры подачи системы отопления канала 2                                                       |
| Т5                       | вход           | СО2 Т комнатная<br>/Т подача ТС | <ul> <li>аналоговый вход для подключения датчика<br/>комнатной температуры или датчика подачи<br/>теплосети канала 2</li> </ul>               |
| DI2                      | вход           | СО2 dP насоса /<br>Сухой ход    | <ul> <li>дискретный вход для подключения датчика<br/>перепада давления насоса Нц или датчика су-<br/>хого хода канала 2</li> </ul>            |
| DI5                      | вход           | СО2 Авт / Авария<br>Нц 1        | <ul> <li>– дискретный вход сигналов разрешения ра-<br/>боты насоса Нц1 канала 2</li> </ul>                                                    |
| DI6                      | вход           | СО2 Авт / Авария<br>Нц 2        | <ul> <li>– дискретный вход сигналов разрешения ра-<br/>боты насоса Нц2 канала 2</li> </ul>                                                    |
| DI8                      | вход           | СО2 Старт регу-<br>лир.         | <ul> <li>– дискретный вход для кнопки «Пуск» регуля-<br/>тора канала 2</li> </ul>                                                             |
| AI2                      | вход           | СО2 Р обратки                   | - аналоговый вход (0-10)В или (0-20)мА для под-<br>ключения датчика давления в обратной трубе<br>системы отопления канал 2                    |
| AO2                      | выход          | СО2 клапан                      | <ul> <li>аналоговый выход (0-10)В для управления</li> <li>электроклапаном канала 2</li> </ul>                                                 |
| DO3                      | выход          | СО2 Откр. клапан                | – выход реле «открыть» задвижку клапана Кр<br>канала 2                                                                                        |
| DO4                      | выход          | СО2 Закр. клапан                | – выход реле «закрыть» задвижку клапана Кр<br>канала 2                                                                                        |
| DO8                      | выход          | СО2 Включить Нц1                | — выход реле «включить» насос Нц 1 канала 2                                                                                                   |
| DO9                      | выход          | СО2 Включить Нц2                | — выход реле «включить» насос Нц 2 канала 2                                                                                                   |
| DO10                     | выход          | СО2 Вкл. подпитку               | — выход реле «включить» клапан подпитки Кп и насос подпитки Нп канала 2                                                                       |
| DO11                     | выход          | Авария                          | <ul> <li>выход сигнала общей аварии (срабатывания<br/>реле перепада давления, сухого хода, отказа<br/>датчика температуры и проч.)</li> </ul> |

Функциональная схема контроллера в режиме «Отопление» (схема 5) показана на рисунке 10. Схема подключения датчиков и исполнительных механизмов показана условно.



Рисунок 10 - Схема подключения датчиков и исполнительных механизмов в режиме «Отопление» (схема 5) для канала регулирования №1

| Вход<br>контрол-<br>лера | Вход<br>/выход | Название сигнала | Описание                                                                                      |
|--------------------------|----------------|------------------|-----------------------------------------------------------------------------------------------|
| T1                       | вход           | Т уличная        | - аналоговый вход для подключения датчика<br>температуры наружного воздуха                    |
| T2                       | вход           | Т обратка ТС     | <ul> <li>аналоговый вход для подключения датчика<br/>температуры обратки теплосети</li> </ul> |

Таблица 5 - Канал регулирования №1: Независимое отопление, схема 5

| Т3   | вход  | СО1 Т подачи                 | - аналоговый вход для подключения датчика<br>температуры подачи системы отопления ка-<br>нала 1                                               |
|------|-------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| DI1  | вход  | СО1 dP насоса /<br>Сухой ход | <ul> <li>дискретный вход для подключения датчика<br/>перепада давления насоса Нц или датчика су-<br/>хого хода канала 1</li> </ul>            |
| DI3  | вход  | СО 1Авт / Авария<br>Нц 1     | <ul> <li>– дискретный вход сигналов разрешения ра-<br/>боты насоса Нц1 канала 1</li> </ul>                                                    |
| DI4  | вход  | СО 1Авт / Авария<br>Нц 2     | <ul> <li>дискретный вход сигналов разрешения ра-<br/>боты насоса Нц2 канала 1</li> </ul>                                                      |
| DI6  | вход  | СО 1 Сух. ход<br>подп.       | <ul> <li>– дискретный вход сигнала датчика сухого хода<br/>насосов подпитки канал 1</li> </ul>                                                |
| DI7  | вход  | СО1 Старт регу-<br>лир.      | <ul> <li>– дискретный вход для кнопки «Пуск» регуля-<br/>тора канала 1</li> </ul>                                                             |
| D19  | вход  | СО1 Автомат Нп 1             | – дискретный вход сигнала разрешения работы<br>насоса подпитки Нп1                                                                            |
| DI10 | вход  | СО1 Автомат Нп 2             | – дискретный вход сигнала разрешения работы<br>насоса подпитки Нп2                                                                            |
| AI1  | вход  | СО1 Р обратки                | - аналоговый вход (0-10)В или (0-20)мА для под-<br>ключения датчика давления в обратной трубе<br>системы отопления канал 1                    |
| AO1  | выход | СО1 клапан                   | - аналоговый выход (0-10)В для управления электроклапаном канала 1                                                                            |
| DO1  | выход | СО1 Откр. клапан             | – выход реле «открыть» задвижку клапана Кр<br>канала 1                                                                                        |
| DO2  | выход | СО1 Закр. клапан             | – выход реле «закрыть» задвижку клапана Кр<br>канала 1                                                                                        |
| DO5  | выход | СО1 Включить Нц1             | – выход реле «включить» насос Нц 1 канала 1                                                                                                   |
| DO6  | выход | СО1 Включить Нц2             | – выход реле «включить» насос Нц 2 канала 1                                                                                                   |
| D07  | выход | СО1 Включить Нп1             | <ul> <li>выход реле «включить» насос подпитки Нп 1</li> <li>канала 1</li> </ul>                                                               |
| DO9  | выход | СО1 Клапан под-<br>питки     | – выход реле «включить» клапан подпитки Кп<br>канала 1                                                                                        |
| DO10 | выход | СО1 Включить Нп2             | <ul> <li>выход реле «включить» насос подпитки Нп 1<br/>канала 1</li> </ul>                                                                    |
| DO11 | выход | Авария                       | <ul> <li>выход сигнала общей аварии (срабатывания<br/>реле перепада давления, сухого хода, отказа<br/>датчика температуры и проч.)</li> </ul> |



Рисунок 11 - Схема подключения датчиков и исполнительных механизмов в режиме «Отопление» (схема 5) для канала регулирования №2

| Вход<br>контрол-<br>лера | Вход<br>/выход | Название сигнала | Описание                                                                                                                 |
|--------------------------|----------------|------------------|--------------------------------------------------------------------------------------------------------------------------|
| T1                       | вход           | Т уличная        | <ul> <li>аналоговый вход для подключения датчика</li> <li>температуры наружного воздуха</li> </ul>                       |
| Т2                       | вход           | Т обратка ТС     | <ul> <li>аналоговый вход для подключения датчика<br/>температуры обратки теплосети</li> </ul>                            |
| Т3                       | вход           | СО2 Т подачи     | <ul> <li>аналоговый вход для подключения датчика</li> <li>температуры подачи системы отопления ка-<br/>нала 2</li> </ul> |

Таблица 6 - Канал регулирования №2: Независимое отопление, схема 5

| DI2  | вход  | CO2 dP насоса /<br>Сухой ход | <ul> <li>дискретный вход для подключения датчика<br/>перепада давления насоса Нц или датчика су-<br/>хого хода канала 2</li> </ul>            |
|------|-------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| DI4  | вход  | СО 2 Сух. ход<br>подп.       | <ul> <li>– дискретный вход сигнала датчика сухого хода<br/>насосов подпитки канал 2</li> </ul>                                                |
| DI5  | вход  | СО 2 Авт / Авария<br>Нц 1    | <ul> <li>дискретный вход сигналов разрешения ра-<br/>боты насоса Нц1 канала 2</li> </ul>                                                      |
| DI6  | вход  | СО 2 Авт / Авария<br>Нц 2    | <ul> <li>– дискретный вход сигналов разрешения ра-<br/>боты насоса Нц2 канала 2</li> </ul>                                                    |
| DI8  | вход  | СО2 Старт регу-<br>лир.      | – дискретный вход для кнопки «Пуск» регуля-<br>тора канала 2                                                                                  |
| DI9  | вход  | СО2 Автомат Нп 1             | <ul> <li>– дискретный вход сигнала разрешения работы<br/>насоса подпитки Нп1</li> </ul>                                                       |
| DI10 | вход  | СО2 Автомат Нп 2             | – дискретный вход сигнала разрешения работы<br>насоса подпитки Нп2                                                                            |
| AI2  | вход  | СО2 Р обратки                | - аналоговый вход (0-10)В или (0-20)мА для под-<br>ключения датчика давления в обратной трубе<br>системы отопления канал 2                    |
| AO2  | выход | СО2 клапан                   | - аналоговый выход (0-10)В для управления<br>электроклапаном канала 2                                                                         |
| DO3  | выход | СО2 Откр. клапан             | – выход реле «открыть» задвижку клапана Кр<br>канала 2                                                                                        |
| DO4  | выход | СО2 Закр. клапан             | – выход реле «закрыть» задвижку клапана Кр<br>канала 2                                                                                        |
| DO6  | выход | СО2 Клапан под-<br>питки     | – выход реле «включить» клапан подпитки Кп<br>канала 2                                                                                        |
| DO7  | выход | СО2 Включить Нп2             | – выход реле «включить» насос подпитки Нп 1<br>канала 2                                                                                       |
| DO8  | выход | СО2 Включить Нц1             | — выход реле «включить» насос Нц 1 канала 2                                                                                                   |
| DO9  | выход | СО2 Включить Нц2             | – выход реле «включить» насос Нц 2 канала 2                                                                                                   |
| DO10 | выход | СО2 Включить Нп1             | <ul> <li>выход реле «включить» насос подпитки Нп 1<br/>канала 2</li> </ul>                                                                    |
| DO11 | выход | Авария                       | <ul> <li>выход сигнала общей аварии (срабатывания<br/>реле перепада давления, сухого хода, отказа<br/>датчика температуры и проч.)</li> </ul> |

### 3.7 Зависимая схема отопления

Функциональная схема контура отопления для зависимой схемы подключения показана на рисунке 12. Контуры теплосети и потребителя соединены, нагрев воды происходит за счет смешения теплоносителя сети и контура потребителя. Регулирование температуры Тп происходит за счет изменения сечения регулирующего клапана Кр, установленного в контуре теплосети.



Типовая схема контура "Зависимое отопление"

Рисунок 12 - Функциональная схема контура отопления для зависимой схемы

Этой схеме соответствуют режимы работы регулятора 6 – 7.

| Наименование режима             | Состав оборудования                                                                                                                                                                                                                                             |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Зависимое отопление 1 (схема 6) | Датчики температуры:<br>- наружного воздуха Тнв<br>- теплосети обратной Ттсо<br>- подачи отопления Тп<br>- воздуха в помещении Тк или тепло-<br>сети подачи (Ттсп)<br>Датчик перепада давления dРнц<br>Циркуляционные насосы Hц1, Hц2<br>Регулирующий клапан Кр |

| іия |
|-----|
| łu  |



Эти два режима отличаются друг от друга количеством циркуляционных насосов Нц.

Работа регулятора в схеме «Зависимое отопление» аналогична работе схемы «Независимое отопление».

### 3.8 Схемы подключения «зависимое отопление»

Функциональная схема контроллера в режиме «Зависимое отопление» (схемы 6-7) показана на рисунке 13. Схема подключения датчиков и исполнительных механизмов показана условно.

| На схеме испол | ьзованы сокращения:                                                                                                              |
|----------------|----------------------------------------------------------------------------------------------------------------------------------|
| Тнв            | – датчик температуры наружного воздуха;                                                                                          |
| Ттсо           | – датчик температуры теплосети обратный;                                                                                         |
| Тп             | – датчик температуры подачи;                                                                                                     |
| Тк             | – датчик температуры внутри помещения;                                                                                           |
| Ттсп           | – датчик температуры подачи теплосети;                                                                                           |
| dРн            | <ul> <li>– реле перепада давления циркуляционных насосов или темпера-<br/>турное реле электродвигателя;</li> </ul>               |
| Ро             | <ul> <li>– аналоговый датчик давления, используется для включения под-<br/>питки, если не используется реле давления;</li> </ul> |
| PS             | <ul> <li>– реле давления, используется для включения подпитки, если не<br/>используется аналоговый датчик давления;</li> </ul>   |
| Кр             | — задвижка с электроуправлением (варианты с дискретными и ана-<br>логовыми 0-10В управляющими сигналами);                        |
| H1, H2         | — циркуляционные насосы;                                                                                                         |
| Нп,            | – насос подпитки (схемы 1, 2);                                                                                                   |
| Нп1, Нп2       | – насосы подпитки (схема 5);                                                                                                     |
| Кп             | – электрический клапан включения контура подпитки.                                                                               |



Рисунок 13 - Функциональная схема контроллера в режиме «Зависимое отопление», канал регулирования №1

| Вход<br>контрол-<br>лера | Вход<br>/выход | Название сигнала | Описание                                                                                                               |
|--------------------------|----------------|------------------|------------------------------------------------------------------------------------------------------------------------|
| T1                       | вход           | Т уличная        | <ul> <li>аналоговый вход для подключения датчика</li> <li>температуры наружного воздуха Тнв</li> </ul>                 |
| Т2                       | вход           | Т обратка ТС     | <ul> <li>аналоговый вход для подключения датчика</li> <li>температуры обратки теплосети Ттсо</li> </ul>                |
| ТЗ                       | вход           | СО1 Т подачи     | <ul> <li>аналоговый вход для подключения датчика<br/>температуры подачи Ттсп системы отопления<br/>канала 1</li> </ul> |

Таблица 8 - Канал регулирования №1: Зависимое отопление, схемы 6, 7

| Т5   | вход  | СО1 Т комнатная<br>/Т подача ТС | <ul> <li>аналоговый вход для подключения датчика<br/>комнатной температуры Тк или датчика подачи<br/>теплосети Ттсп канала 1</li> </ul>       |
|------|-------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| DI1  | вход  | СО1 dP насоса /<br>Сухой ход    | <ul> <li>дискретный вход для подключения датчика<br/>перепада давления насоса Нц или датчика су-<br/>хого хода канала 1</li> </ul>            |
| DI3  | вход  | СО 1Авт / Авария<br>Нц 1        | <ul> <li>дискретный вход сигналов режима управле-<br/>ния работой насоса Нц1 канала 1</li> </ul>                                              |
| DI4  | вход  | СО 1Авт / Авария<br>Нц 2        | <ul> <li>дискретный вход сигналов режима управле-<br/>ния работой насоса Нц2 канала 1</li> </ul>                                              |
| DI7  | вход  | СО1 Старт регу-<br>лир.         | – дискретный вход для кнопки «Пуск» регуля-<br>тора канала 1                                                                                  |
| A01  | выход | СО1 клапан                      | - аналоговый выход (0-10)В для управления<br>электроклапаном канала 1                                                                         |
| DO1  | выход | СО1 Откр. клапан                | – выход реле «открыть» задвижку клапана Кр<br>канала 1                                                                                        |
| DO2  | выход | СО1 Закр. клапан                | – выход реле «закрыть» задвижку клапана Кр<br>канала 1                                                                                        |
| DO5  | выход | СО1 Включить Нц1                | — выход реле «включить» насос Нц 1 канала 1                                                                                                   |
| DO6  | выход | СО1 Включить Нц2                | – выход реле «включить» насос Нц 2 канала 1                                                                                                   |
| DO11 | выход | Авария                          | <ul> <li>выход сигнала общей аварии (срабатывания<br/>реле перепада давления, сухого хода, отказа<br/>датчика температуры и проч.)</li> </ul> |



Рисунок 14 - Функциональная схема контроллера в режиме «Зависимое отопление», канал регулирования №2

| Вход<br>контрол-<br>лера | Вход<br>/выход | Название сигнала | Описание                                                                                                |
|--------------------------|----------------|------------------|---------------------------------------------------------------------------------------------------------|
| T1                       | вход           | Т уличная        | <ul> <li>аналоговый вход для подключения датчика</li> <li>температуры наружного воздуха Тнв</li> </ul>  |
| T2                       | вход           | Т обратка ТС     | <ul> <li>аналоговый вход для подключения датчика</li> <li>температуры обратки теплосети Ттсо</li> </ul> |
| Т4                       | вход           | СО2 Т подачи     | - аналоговый вход для подключения датчика<br>температуры подачи Ттсп системы отопления<br>канала 2      |

Таблица 9 - Канал регулирования №2: Независимое отопление, схемы 6, 7

| Т5   | вход  | СО2 Т комнатная<br>/Т подача ТС | <ul> <li>аналоговый вход для подключения датчика<br/>комнатной температуры Тк или датчика подачи<br/>теплосети Ттсп канала 2</li> </ul>       |
|------|-------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| DI2  | вход  | СО2 dP насоса /<br>Сухой ход    | <ul> <li>дискретный вход для подключения датчика<br/>перепада давления насоса Нц или датчика су-<br/>хого хода канала 2</li> </ul>            |
| DI5  | вход  | СО2 Авт / Авария<br>Нц 1        | <ul> <li>дискретный вход сигналов режима управле-<br/>ния работой насоса Нц1 канала 2</li> </ul>                                              |
| DI6  | вход  | СО2 Авт / Авария<br>Нц 2        | <ul> <li>– дискретный вход сигналов режима управле-<br/>ния работой насоса Нц2 канала 2</li> </ul>                                            |
| DI8  | вход  | СО2 Старт регу-<br>лир.         | – дискретный вход для кнопки «Пуск» регуля-<br>тора канала 2                                                                                  |
| AI2  | вход  | СО2 Р обратки                   | - аналоговый вход (0-10)В или (0-20)мА для под-<br>ключения датчика давления в обратной трубе<br>системы отопления канал 2                    |
| AO2  | выход | СО2 клапан                      | - аналоговый выход (0-10)В для управления электроклапаном канала 2                                                                            |
| DO3  | выход | СО2 Откр. клапан                | – выход реле «открыть» задвижку клапана Кр<br>канала 2                                                                                        |
| DO4  | выход | СО2 Закр. клапан                | – выход реле «закрыть» задвижку клапана Кр<br>канала 2                                                                                        |
| DO8  | выход | СО2 Включить Нц1                | — выход реле «включить» насос Нц 1 канала 2                                                                                                   |
| DO9  | выход | СО2 Включить Нц2                | — выход реле «включить» насос Нц 2 канала 2                                                                                                   |
| DO10 | выход | СО2 Вкл. подпитку               | – выход реле «включить» клапан подпитки Кп и насос подпитки Нп канала 2                                                                       |
| D011 | выход | Авария                          | <ul> <li>выход сигнала общей аварии (срабатывания<br/>реле перепада давления, сухого хода, отказа<br/>датчика температуры и проч.)</li> </ul> |

## 4 Контур «ГВС»

Функциональная схема контура горячего водоснабжения ГВС показана на рисунке

15.

Контроллер в контуре ГВС производит автоматическое поддержание температуры воды Тп в закрытом контуре ГВС в соответствии с заданной уставкой Тп за счет регулирования температуры обратной воды теплосети при помощи регулирующего клапана Кр.

Контуры теплосети и ГВС потребителя разделены, нагрев воды происходит за счет теплообменника. Для подпитки контура ГВС используется контур ХВС. Регулирование температуры горячей воды Тп происходит за счет изменения сечения регулирующего клапана Кр, установленного в контуре теплосети.

Типовая схема контура "ГВС"



Рисунок 15 - Функциональная схема контура ГВС

Уставка Тп может быть увеличена или уменьшена на заданное постоянное значение температуры в зависимости от времени (постоянно, по нерабочим дням, по дням недели, по дню и ночи).

Так как контроллер имеет два независимых контура управления, то контуром «ГВС» могут быть как первый, так и второй или оба одновременно.

Имеются два режима работы регулятора «ГВС1» и «ГВС2».



Таблица 10 - Режимы работы регулятора в контуре ГВС

Режимы «ГВС1» и «ГВС2» отличаются друг от друга количеством циркуляционных насосов Нц.

Кнопка «Пуск» служит для запуска работы регулятора. Замыкание контактов кнопки (на вход поступает лог.0) запускает работу регулятора, размыкание контактов – останавливает. К входам регулятора подключаются термопреобразователи сопротивления T2-T4, предназначенные для:

Ттсо – измерения температуры обратной воды в теплосети;

Тп – измерения температуры воды контура ГВС.

Сигналы от термопреобразователя сопротивления T3-T4, прошедшие аппаратную фильтрацию от помех, поступают на регулятор температуры, реализованный программноаппаратным способом в микроконтроллере.

Регулятор сравнивает измеренное значение температуры подачи Тп с уставкой Туст, заданной в настройках, и формирует сигнал управления для клапана Кр с целью уменьшения их рассогласования.

Регулятор формирует дискретные управляющие сигналы (открыть, закрыть) для регулирующего клапана Кр с дискретным управлением при помощи выходных каскадов вида «электронное реле». Одновременно регулятор на своем выходе АО цифро-аналогового преобразователя формирует сигнал напряжения (0-10) В для регулирующего клапана Кр с непрерывным управлением.

Регулирующей клапан Кр со слаботочным дискретным управлением подключается к регулятору к двум релейным выходам контроллера непосредственно. Чем больше время, в течение которого контакты реле замкнуты, тем на больший угол (ход штока) повернется задвижка. Поддержание температуры Тп происходит за счет изменения потока теплоносителя посредством изменения сечения клапана Кр. Управляющее воздействие подается на клапан Кр с заданным периодом управления. Во втором случае на клапан подается непрерывный сигнал с выхода АО контроллера: 0В – соответствует закрытому состоянию, 10 В – открытому клапану.

Контур ГВС содержит два циркуляционных насоса Нц1 и Нц2, включенных параллельно. Для разрешения работы насоса следует замкнуть цепь «ГВС2 Авт / Авария Нц 1», «ГВС2 Авт / Авария Нц 2» (подать лог.0). Регулятор при помощи магнитных контакторов управляет включением циркуляционных насосов Нц1 и Нц2. Насосы работают попеременно, переключаясь через заданное в настройках время, например, раз в сутки. Во время работы контролируется работоспособность насоса при помощи датчика перепада давления dPнц, формирующего на своих выходах двоичный сигнал, который поступает на дискретный вход контроллера. В случае отсутствия необходимого значения перепада давления «вход -выход» на включенном насосе регулятор его отключает, формирует сигнал «Авария», индицирует аварию на табло. В некоторых случаях вместо датчика перепада давления используют датчик сухого хода на входе насосов.

#### 4.1 Схемы подключения ГВС

Регулятор поддерживает работу для одного (схема 8) или двух (схема 9) циркуляционных насосов. Так как регулятор имеет два самостоятельных канала управления, то контуром «ГВС» могут быть как первый, так и второй или оба одновременно.

Функциональная схема контроллера в режиме «ГВС» (схемы 8, 9) показана на рисунке 16. Схема подключения датчиков и исполнительных механизмов показана условно. На схеме использованы сокращения:

| атур- |
|-------|
| нало- |
|       |
|       |
|       |

Канал 1 «ГВС» схемы 8-9



Рисунок 16 - Функциональная схема контроллера в режиме «ГВС (схемы 8, 9)», канал регулирования №1

| /                        |                | / /                           | · · ·                                                                                                                                         |
|--------------------------|----------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Вход<br>контрол-<br>лера | Вход<br>/выход | Название сигнала              | Описание                                                                                                                                      |
| тз                       | вход           | ГВС1 T подачи                 | <ul> <li>аналоговый вход для подключения датчика</li> <li>температуры подачи Тп системы отопления ка-<br/>нала 1</li> </ul>                   |
| DI1                      | вход           | ГВС1 dР насоса /<br>Сухой ход | <ul> <li>дискретный вход для подключения датчика<br/>перепада давления насоса Нц или датчика су-<br/>хого хода канала 1</li> </ul>            |
| DI3                      | вход           | ГВС1 Авт / Авария<br>Нц 1     | <ul> <li>дискретный вход сигналов режима управле-<br/>ния работой насоса Нц1 канала 1</li> </ul>                                              |
| DI4                      | вход           | ГВС1 Авт / Авария<br>Нц 2     | <ul> <li>дискретный вход сигналов режима управле-<br/>ния работой насоса Нц2 канала 1</li> </ul>                                              |
| DI7                      | вход           | ГВС1 Старт регу-<br>лир.      | <ul> <li>– дискретный вход для кнопки «Пуск» регуля-<br/>тора канала 1</li> </ul>                                                             |
| A01                      | выход          | ГВС1 клапан                   | <ul> <li>аналоговый выход (0-10)В для управления</li> <li>электроклапаном канала 1</li> </ul>                                                 |
| D01                      | выход          | ГВС1 Откр. клапан             | – выход реле «открыть» задвижку клапана Кр<br>канала 1                                                                                        |
| DO2                      | выход          | ГВС1 Закр. клапан             | – выход реле «закрыть» задвижку клапана Кр<br>канала 1                                                                                        |
| DO5                      | выход          | ГВС1 Включить<br>Нц1          | — выход реле «включить» насос Нц 1 канала 1                                                                                                   |
| DO6                      | выход          | ГВС1 Включить<br>Нц2          | — выход реле «включить» насос Нц 2 канала 1                                                                                                   |
| DO11                     | выход          | Авария                        | <ul> <li>выход сигнала общей аварии (срабатывания<br/>реле перепада давления, сухого хода, отказа<br/>датчика температуры и проч.)</li> </ul> |

Таблица 11 - Канал регулирования №1: ГВС, схемы 8-9



Рисунок 17 - Функциональная схема контроллера в режиме «ГВС (схемы 8, 9)», канал регулирования №2

| Вход<br>контрол-<br>лера | Вход<br>/выход | Название сигнала              | Описание                                                                                                                           |
|--------------------------|----------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Т4                       | вход           | ГВС2 Т подачи                 | <ul> <li>аналоговый вход для подключения датчика</li> <li>температуры подачи Тп системы отопления ка-<br/>нала 2</li> </ul>        |
| DI2                      | вход           | ГВС2 dР насоса /<br>Сухой ход | <ul> <li>дискретный вход для подключения датчика<br/>перепада давления насоса Нц или датчика су-<br/>хого хода канала 2</li> </ul> |

Таблица 12 - Канал регулирования №2: ГВС, схемы 8-9

| DI5  | вход  | ГВС2 Авт / Авария<br>Нц 1 | <ul> <li>– дискретный вход сигналов режима управле-<br/>ния работой насоса Нц1 канала 2</li> </ul>                                            |
|------|-------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| DI6  | вход  | ГВС2 Авт / Авария<br>Нц 2 | <ul> <li>– дискретный вход сигналов режима управле-<br/>ния работой насоса Нц2 канала 2</li> </ul>                                            |
| DI8  | вход  | ГВС2 Старт регу-<br>лир.  | – дискретный вход для кнопки «Пуск» регуля-<br>тора канала 2                                                                                  |
| AO2  | выход | ГВС2 клапан               | - аналоговый выход (0-10)В для управления<br>электроклапаном канала 2                                                                         |
| DO3  | выход | ГВС2 Откр. клапан         | – выход реле «открыть» задвижку клапана Кр<br>канала 2                                                                                        |
| DO3  | выход | ГВС2 Закр. клапан         | – выход реле «закрыть» задвижку клапана Кр<br>канала 2                                                                                        |
| DO8  | выход | ГВС2 Включить<br>Нц1      | — выход реле «включить» насос Нц 1 канала 2                                                                                                   |
| DO9  | выход | ГВС2 Включить<br>Нц2      | — выход реле «включить» насос Нц 2 канала 2                                                                                                   |
| D011 | выход | Авария                    | <ul> <li>выход сигнала общей аварии (срабатывания<br/>реле перепада давления, сухого хода, отказа<br/>датчика температуры и проч.)</li> </ul> |

### 5 Контур «Вентиляция»

Контроллер в контуре «Вентиляция» производит автоматическое поддержание температуры приточного воздуха Тп системы вентиляции в соответствии с заданным температурным (погодным) графиком за счет регулирования температуры воды калорифера при помощи регулирующего клапана Кр.

Так как регулятор имеет два независимых контура управления, то контуром «Вентиляция» могут быть как первый, так и второй или оба одновременно.

Функциональная схема контура вентиляции показана на рисунке 18.



Типовая схема контура "Вентиляция"

Рисунок 18 - Функциональная схема контура вентиляции

#### 5.1 Поддержание температуры воздуха в помещении

Температурный график Tn=f(Tнв) является функцией, описывающей зависимость температуры воздуха Tn в помещении от температуры Tнв наружного воздуха. График задается пятью точками. Между точками график линейный (рисунок 19).



Рисунок 19 - Температурный график Тп=f(Тнв)

График будет автоматически изменён при включении коррекции: сдвиг верх или вниз на заданное постоянное значение температуры в зависимости от времени (постоянно, по нерабочим дням, по дням недели, по дню и ночи), а также при включении ограничения температуры в обратном трубопроводе теплосети.

5.2 Ограничение температуры в обратном трубопроводе теплосети

Регулятор может выполнять функцию ограничения температуры в обратном трубопроводе теплосети Ттсо. Это необходимо для исключения перегрева обратной сетевой воды. Ограничение температуры воды, возвращаемой в тепловую сеть, производится по графику максимально допустимой температуры Ттсо=f(Тнв) в обратном трубопроводе. График задается пятью точками. Между точками график линейный (рисунок 20).



Рисунок 20 - графику максимально допустимой температуры Ттсо

При превышении температуры Ттсо над заданным графиком максимальной температуры в обратном трубопроводе Ттсо=f(Тнв), регулятор переключается на ее регулирование с целью недопущения перегрева воды, возвращаемой в тепловую сеть. В этом случае, новое значение уставки температуры воздуха Тп вычисляется как:

Тп = Тп — (Ттсо - f(Тнв))\*К

где Тп – уставка температуры подачи воздуха по графику Tn=f(Tнв);

Ттсо – текущее значение температуры обратной сетевой воды;

f(Тнв) — значение максимальной температуры в обратном трубопроводе (по графику).

Коэффициент К определяет степень влияния превышения температуры в обратном трубопроводе теплосети на уставку Тп температуры подачи воздуха. При значении К равным нулю ограничение температуры в обратном трубопроводе не производится.

### 5.3 Схема подключения «вентиляция»

Этой схеме соответствуют режим работы регулятора «Вентиляция, схема 10».

|--|

| Наименование режима                        | Состав оборудования                                                                                                                                                                                                                                                          |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| «Вентиляция, схема 10»<br><i>теплосеть</i> | Датчики температуры:<br>- наружного воздуха Тнв<br>- теплосети обратной Ттсо<br>- подачи воздуха Тп<br>- замерзания калорифера Тз<br>Датчик перепада давления насоса dPн<br>Датчик перепада давления вентилятора<br>dPв<br>Циркуляционный насос H1<br>Регулирующий клапан Кр |

Структурная схема системы регулирования в режиме «Вентиляция» приведена на рисунке 21. Схема подключения датчиков и исполнительных механизмов показана условно.


Рисунок 21 - Структурная схема системы регулирования в режиме «Вентиляция», канал регулирования №1

| Вход<br>контрол-<br>лера | Вход<br>/выход | Название сигнала | Описание                                                                                                         |
|--------------------------|----------------|------------------|------------------------------------------------------------------------------------------------------------------|
| T1                       | вход           | Т уличная        | <ul> <li>аналоговый вход для подключения датчика</li> <li>температуры наружного воздуха Тнв</li> </ul>           |
| Т2                       | вход           | ВЕНТ1 Т нагрева  | <ul> <li>аналоговый вход для подключения датчика</li> <li>температуры обратки теплосети Ттсо канала 1</li> </ul> |
| Т3                       | вход           | Т приточки       | <ul> <li>аналоговый вход для подключения датчика</li> <li>температуры подачи Тп воздуха канала 1</li> </ul>      |
| DI1                      | вход           | BEHT1 dP насоса  | <ul> <li>– дискретный вход для подключения датчика<br/>перепада давления насоса Н канала 1</li> </ul>            |

Таблица 14 - Канал регулирования № 1: Вентиляция, схема 10

| DI3  | вход  | BEHT1 dP вентиля-<br>тора    | <ul> <li>– дискретный вход для подключения датчика<br/>перепада давления вентилятора В канала 1</li> </ul>                         |
|------|-------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| DI4  | вход  | ВЕНТ1 Заморозка              | <ul> <li>– дискретный вход для подключения датчика<br/>заморозки теплообменника канала 1</li> </ul>                                |
| DI7  | вход  | ВЕНТ1 Пуск                   | – дискретный вход для кнопки «Пуск» регуля-<br>тора канала 1                                                                       |
| A01  | выход | ВЕНТ1 клапан                 | - аналоговый выход (0-10)В для управления<br>электроклапаном канала 1                                                              |
| DO1  | выход | ВЕНТ1 Откр. кла-<br>пан      | – выход реле «открыть» задвижку клапана Кр<br>канала 1                                                                             |
| DO2  | выход | ВЕНТ1 Закр. кла-<br>пан      | – выход реле «закрыть» задвижку клапана Кр<br>канала 1                                                                             |
| DO5  | выход | ВЕНТ1 Включить<br>насос      | – выход реле «включить» насос Н канала 1                                                                                           |
| DO6  | выход | ВЕНТ1 Включить<br>вентилятор | – выход реле «включить» вентилятор В канала<br>1                                                                                   |
| DO11 | выход | Авария                       | <ul> <li>выход сигнала общей аварии (срабатывания<br/>реле перепада давления, отказа датчика темпе-<br/>ратуры и проч.)</li> </ul> |



Рисунок 22 - Структурная схема системы регулирования в режиме «Вентиляция», канал регулирования №2

| Вход<br>контрол-<br>лера | Вход<br>/выход | Название сигнала | Описание                                                                                                         |
|--------------------------|----------------|------------------|------------------------------------------------------------------------------------------------------------------|
| T1                       | вход           | Т уличная        | <ul> <li>аналоговый вход для подключения датчика</li> <li>температуры наружного воздуха Тнв</li> </ul>           |
| Т4                       | вход           | ВЕНТ2 Т приточки | <ul> <li>аналоговый вход для подключения датчика</li> <li>температуры подачи Тп воздуха канала 2</li> </ul>      |
| T5                       | вход           | ВЕНТ2 Т нагрева  | <ul> <li>аналоговый вход для подключения датчика</li> <li>температуры обратки теплосети Ттсо канала 2</li> </ul> |
| DI2                      | вход           | BEHT2 dP насоса  | <ul> <li>– дискретный вход для подключения датчика<br/>перепада давления насоса Н канала 2</li> </ul>            |

Таблица 13 - Канал регулирования № 2: Вентиляция, схема 10

| DI5  | вход  | BEHT2 dP вентиля-<br>тора    | <ul> <li>– дискретный вход для подключения датчика<br/>перепада давления вентилятора В канала 2</li> </ul>                         |
|------|-------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| DI6  | вход  | ВЕНТ2 Заморозка              | <ul> <li>– дискретный вход для подключения датчика<br/>заморозки теплообменника канала 2</li> </ul>                                |
| DI8  | вход  | ВЕНТ2 Пуск                   | – дискретный вход для кнопки «Пуск» регуля-<br>тора канала 2                                                                       |
| AO2  | выход | ВЕНТ2 клапан                 | - аналоговый выход (0-10)В для управления<br>электроклапаном канала 2                                                              |
| DO3  | выход | ВЕНТ2 Откр. кла-<br>пан      | – выход реле «открыть» задвижку клапана Кр<br>канала 2                                                                             |
| DO4  | выход | ВЕНТ2 Закр. кла-<br>пан      | – выход реле «закрыть» задвижку клапана Кр<br>канала 2                                                                             |
| DO8  | выход | ВЕНТ2 Включить<br>насос      | – выход реле «включить» насос Н канала 2                                                                                           |
| DO9  | выход | ВЕНТ2 Включить<br>вентилятор | – выход реле «включить» вентилятор В канала<br>2                                                                                   |
| DO11 | выход | Авария                       | <ul> <li>выход сигнала общей аварии (срабатывания<br/>реле перепада давления, отказа датчика темпе-<br/>ратуры и проч.)</li> </ul> |

Кнопка «Пуск» служит для запуска работы регулятора.

К входам контроллера подключаются термопреобразователи сопротивления T1-T5, предназначенные для:

Тнв – измерения температуры наружного воздуха;

Ттсо – измерения температуры обратной воды в теплосети;

Тп – измерения температуры воздуха в помещении.

Сигналы от термопреобразователей сопротивления T1-T5, прошедшие аппаратную фильтрацию от помех, а также программную коррекцию, поступают на регулятор температуры, реализованный в микроконтроллере.

Регулятор сравнивает измеренное значение температуры Тп с уставкой, заданной по графику относительно температуры наружного воздуха Тнв, заданного в настройках, и формирует выходной сигнал для клапана Кр с целью уменьшения их рассогласования. Выходной сигнал регулятора управляет выходным каскадом типа «реле» для регулирующего клапана Кр с дискретным управлением (открыть, закрыть) или цифроаналоговым преобразователем (ЦАП) для регулирующего клапана Кр с непрерывным управлением (0-10) В. Регулирующей клапан Кр с дискретным управлением подключается к регулятору к двум каналам реле непосредственно, обеспечивающие открывание и закрывание его задвижки.

Регулятор при помощи магнитных контакторов управляет включением вентилятора В и циркуляционного насоса Н теплосети. Также во время работы регулятора контролируется работоспособность вентилятора и насоса при помощи датчиков перепада давления dPв и dPн, формирующих на своих выходах двоичный сигнал. В случае отсутствия необходимого значения перепада давления «вход -выход» на включенном насосе или вентиляторе регулятор их отключает, формирует сигнал «Авария», индицирует аварию на дисплее. Поддержание температуры Тп происходит за счет изменения потока теплоносителя через водяной калорифер посредством клапана Кр. Коэффициенты регуляторов задаются на этапе пуско-наладочных работ для конкретного объекта регулирования.

Датчик заморозки служит для контроля температуры воды Тз в калорифере. При отрицательных температурах этот датчик формирует двоичный сигнал о заморозке, который поступает на дискретный вход контроллера и служит для запуска прогрева калорифера. Во время прогрева выключается вентилятор, включается насос и полностью открывается клапан Кр.

## 6 Настройка регулятора температуры

Контроллер в режиме «Отопление, ГВС, вентиляция» можно настраивать вручную.

Электропитание на контроллер подать можно одним из следующих способов:

- подключить кабель USB к контроллеру и к свободному USB порту компьютеру;

- подключить кабель сети питания 220 В, 50 Гц к разъему ХЗ;

- подключить кабель источника питания +12 В или +24 В к разъему X4, соблюдая полярность.

После подачи питания включается дисплей, на который кратковременно выводится логотип разработчика контроллера.

Если настройка каналов регулирования ещё не была произведена, то выводится сообщение «Схема не выбрана» для первого (верхнего) и второго (нижнего) каналов регулирования.



Для перехода в меню нажать на кнопку «→».



Переход по пунктам меню осуществляется кнопками «↓», «↑». Выход – «Esc».

Меню состоит из следующих пунктов:

| Таблица 14 — Описание | пунктов основного меню |
|-----------------------|------------------------|
|-----------------------|------------------------|

| Пункт меню          | Описание                                               |
|---------------------|--------------------------------------------------------|
| 1. Схема 1          | Название канала регулирования 1                        |
| 1.1 Выбор схемы     | Выбор схемы режима (1-10) для первого канала           |
| 1.2. Параметры      | Редактирование параметров режима первого канала        |
| 1.3 Журналы событий | Просмотр аварийных событий в памяти для первого канала |
| 1.4 Сервисное меню  | Настройка функций обслуживания первого канала          |
| 2. Схема 2          | Название канала регулирования 2                        |
| 2.1 Выбор схемы     | Выбор схемы режима (1-10) для второго канала           |
| 2.2. Параметры      | Редактирование параметров режима второго канала        |

| 2.3 Журналы событий      | Просмотр аварийных событий в памяти для первого канала |
|--------------------------|--------------------------------------------------------|
| 2.4 Сервисное меню       | Настройка функций обслуживания второго канала          |
| 3. Рабочий календарь     | Назначение праздничных и выходных дней в году          |
| 4. Настройки контроллера | Настройка общих параметров контроллера                 |

# 6.1 Пункт меню «Выбор схемы»

Пункт меню «Выбор схемы 1, 2» служит для задания каналу 1, 2 регулятора типа схемы регулирования.

Если схема не выбрана, то следует нажать «↓» для выбора схемы.

| Выбор схемы 1 | $\bigtriangledown$ |
|---------------|--------------------|
| Не выбрана    |                    |
|               |                    |
|               |                    |
|               |                    |
|               |                    |
|               |                    |



Переход по пунктам меню осуществляется кнопками «↓», «↑». Выбор схемы - нажать «→». Выход – «Esc».

Меню содержит следующие пункты – выбор схемы регулирования.

Таблица 15 – Описание пунктов меню «Выбор схемы»

| Пункт меню                   | Отображение на экране                                                                                         | Описание                                                                                   |
|------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Не выбрана                   | Схема не выбрана                                                                                              | Схема не выбрана, ка-<br>нал выключен                                                      |
| Независимое<br>отопление (1) | TETTER<br>Hu<br>UDUDEDEU<br>THE<br>Hu<br>Hu<br>Hu<br>Hu<br>Hu<br>Hu<br>Hu<br>Hu<br>Hu<br>Hu<br>Hu<br>Hu<br>Hu | Два циркуляционных<br>насоса, насос подпитки,<br>клапан подпитки, регу-<br>лирующий клапан |
| Независимое<br>отопление (2) | Ternocera<br>Hard Hard Hard Hard Hard Hard Hard Hard                                                          | Один циркуляционный<br>насос, насос подпитки,<br>клапан подпитки, регу-<br>лирующий клапан |

## ECAH.426469.019PЭ3

| Пункт меню                   | Отображение на экране                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Описание                                                                                        |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Независимое<br>отопление (3) | TET THE KP HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>H             | Два циркуляционных<br>насоса, регулирующий<br>клапан                                            |
| Независимое<br>отопление (4) | dP <sub>HU</sub><br>TETTCO<br>THB<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTCO<br>TTC | Один циркуляционный<br>насос, регулирующий<br>клапан                                            |
| Независимое<br>отопление (5) | TE T <sub>HB</sub><br>(P)<br>(P)<br>(P)<br>(P)<br>(P)<br>(P)<br>(P)<br>(P)<br>(P)<br>(P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Два циркуляционных<br>насоса, два насоса под-<br>питки, клапан подпитки,<br>регулирующий клапан |
| Зависимое<br>отопление (1)   | Ternocers<br>Rb<br>Hrd<br>Hrd<br>Hrd<br>Hrd<br>Hrd<br>Hrd<br>Hrd<br>Hrd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Два циркуляционных<br>насоса, регулирующий<br>клапан                                            |
| Зависимое<br>отопление (2)   | TET THE<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HULL<br>HU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Один циркуляционный<br>насос, регулирующий<br>клапан                                            |

#### ECAH.426469.019PЭ3

| Пункт меню | Отображение на экране                                                                                                                                                                  | Описание                                                        |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| ГВС (1)    | TEL Truccette<br>TEL Truccette<br>KP<br>KP<br>KBC<br>ABC<br>ABC<br>ABC<br>ABC<br>ABC<br>ABC<br>ABC<br>A                                                                                | Два циркуляционных<br>насоса, регулирующий<br>клапан            |
| ГВС (2)    | TE Tnn<br>TE Tnn<br>TE Troo<br>Kp<br>Kp<br>Kp<br>Kp<br>Kp<br>Kp<br>Kp<br>Kp<br>Kp<br>Hu<br>U<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D | Один циркуляционный<br>насос, регулирующий<br>клапан            |
| Вентиляция | THB<br>THB<br>THB<br>THB<br>THB<br>THB<br>THB<br>THB                                                                                                                                   | Вентилятор, циркуляци-<br>онный насос, регулиру-<br>ющий клапан |

После выбора схемы требуется её подтвердить, нажав на «→».

| Сменить теку | цую схему? |
|--------------|------------|
| < Нет        | Да         |

# 6.2 Пункт меню «Параметры»

Пункт меню «Параметры» позволяет для выбранной схемы регулирования задать параметры температурного графика, режимы управления насосами и подпиткой, параметры управления регулирующим клапаном и проч.

Некоторые пункты меню появляются только при выборе определенной схемы регулирования, например, «Управление вентилятором».



Переход по пунктам меню осуществляется кнопками «↓», «↑». Выбор схемы - нажать «→». Выход – «Esc».

Блок-схема пунктов меню «Параметры» показана на рисунке 23.

#### 6.2.1 Пункт меню «Уставка температуры»

Пункт меню «Параметры схемы» позволяет задать параметры температурного графика выбранного канала регулирования.

Переход по пунктам меню осуществляется кнопками «↓», «↑». Выбор схемы - нажать «→». Выход – «Esc».

| Уставка темпер.                                            | $\Leftrightarrow$ |
|------------------------------------------------------------|-------------------|
| 1. Температурный график<br>2. Коррекция графика            |                   |
| 3. Корр. по нерабочим дням<br>0 °С                         |                   |
| 4. Корр. по дням недели<br>5. Влияние обратки ТС<br>К=0.00 |                   |
| 6. Огран. по подаче ТС<br>НЕТ                              |                   |
| 7. Влияние Т комнатной<br>НЕТ t= 24 C K=3.0                |                   |

Меню состоит из следующих пунктов:

Таблица 16 – Описание пунктов меню «Уставка температуры»

| Пункт меню                                                                | Описание                                                                                                                                                       |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Температурный гра-<br/>фик/ Постоянное значе-<br/>ние</li> </ol> | - задание точек температурного графика Тп=f(Тнв) для ре-<br>жима «Отопление», «Вентиляция»;<br>- задание уставки температуры Тп для режима «ГВС»:              |
| 2. Коррекция графика                                                      | - смещение точек температурного графика Tn=f(Tнв) на по-<br>стоянную величину коррекции;                                                                       |
| 3. Корр. по нерабочим<br>дням                                             | - смещение точек температурного графика Тп=f(Тнв) на ве-<br>личину коррекции только по нерабочим дням;                                                         |
| 4. Корр. по дням недели                                                   | <ul> <li>- смещение точек температурного графика Тп=f(Тнв) на ве-<br/>личину коррекции по каждому дню недели и в течение су-<br/>ток (день и ночь);</li> </ul> |
| 5. Влияние обратки ТС                                                     | - режим ограничения температуры обратной сетевой воды;                                                                                                         |
| 6. Огран. по подаче ТС                                                    | - режим ограничения температуры прямой сетевой воды;                                                                                                           |
| 7. Влияние Т комнатной                                                    | - режим поддержания температуры Тп по датчику комнат-<br>ной температуры воздуха.                                                                              |



Рисунок 23 - Блок-схема пунктов меню «Параметры»

## 6.2.2 Пункт меню «Температурный график»

Температурный график Tn=f(Tнв) представлен в виде таблицы, состоящей из пяти строк. Каждая строка соответствует точке на графике. Между точками график линейный. Пользователь должен задать пять значений температуры Tn в C° соответствующие пяти значениям Tнв.



Переход по точкам таблицы осуществляется кнопками «→», «←», увеличение/уменьшение значения кнопками «↑», «↓», ввод параметра – нажать «→» в крайнем правом положении «Coxp.», выход без сохранения – нажать «←» в крайнем левом положении «Не coxp.».

Температурный график можно корректировать на заданную величину температуры как по дням недели, так и по времени суток - дню и ночи.



Значения всех коррекций графика суммируются. Пример результирующей величины коррекции графика:

Коррекция = Коррекция графика + Коррекция по нерабочим дням + Коррекция по дням недели (день или ночь)

#### 6.2.3 Пункт меню «Коррекция графика»

График Tn=f(Tнв) можно просто сместить вверх и вниз на заданную величину коррекции. Эта коррекция действует всегда, независимо от дня недели и времени.

| Корр. график | a              |
|--------------|----------------|
|              | $\bigcirc^{+}$ |
| -5°C         |                |
| ∜He coxp.    | Coxp. 〉        |

Пользователь вводит значение коррекции графика в °С.

Величина коррекции может быть, как положительной, так и отрицательной. Отрицательные значения смещают график вниз. Увеличение/уменьшение значения осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

### 6.2.4 Пункт меню «Коррекция по нерабочим дням»

График Tn=f(Tнв) можно дополнительно сместить вверх и вниз на заданную величину коррекции только по нерабочим дням.

| Корр. по нера | абоч.          |
|---------------|----------------|
|               | $\bigcirc^{+}$ |
| -4°C          |                |
| ↓ He coxp.    | Coxp. 〉        |

Пользователь вводит значение коррекции графика в °С.

Величина коррекции может быть, как положительной, так и отрицательной. Отрицательные значения смещают график вниз.

Увеличение/уменьшение значения осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

### 6.2.5 Пункт меню «Коррекция по дням недели»

График Tn=f(Tнв) можно дополнительно сместить вверх и вниз на заданную величину коррекции по каждому дню недели, причем по двум временным промежуткам в течение суток (день и ночь).



Выбор дня недели осуществляется кнопками « $\uparrow$ », « $\downarrow$ », ввод параметра – нажать »

«→».

| В понедельник |       |            |                 |
|---------------|-------|------------|-----------------|
| С             | ПО    | <b>▲t°</b> |                 |
| 00:00         | 06:30 | -5°        |                 |
| 22:00         | 23:59 | -5°        |                 |
|               |       |            | $\bigoplus^{+}$ |
| 4             | 2     |            | Coxp. 〉         |

Пользователь задает конец первого временного отрезка [00:00, X1] и начало второго [X2, 23:59]. Задаются часы и минуты.

Пользователь вводит значение коррекции графика в °С.

Величина коррекции может быть, как положительной, так и отрицательной. Отрицательные значения смещают график вниз.

Переход по точкам таблицы осуществляется кнопками «→», «←», увеличение/уменьшение значения кнопками «↑», «↓», ввод параметра – нажать «→» в крайнем правом положении «Coxp.», выход без сохранения – нажать «←» в крайнем левом положении «Не coxp.».

## 6.2.6 Пункт меню «Влияние обратки»

Пункт меню «Влияние обратки» позволяет задать параметры, необходимые для ограничения температуры в обратном трубопроводе теплосети в соответствии с графиком по температуре наружного воздуха Ттсо=f(Тнв). Это необходимо в режиме «Отопление» для соблюдения требований теплоснабжающей организации и недопущения «перегрева обратки».



Настройки используются только для режима «Отопление» и «Вентиляция».

Выбор пункта меню осуществляется кнопками « $\uparrow$ », « $\downarrow$ », ввод параметра – нажать « $\rightarrow$ ».

Меню содержит следующие пункты:

| Пункт меню                | Описание                                       |  |
|---------------------------|------------------------------------------------|--|
| 1. Темпер. график обратки | Задание точек температурного графика T2=f(Тнв) |  |
| 2. Коэффициент влияния    | Задание коэффициента влияния К                 |  |

## 6.2.6.1 Пункт меню «Температурный график обратки»

Температурный график Ттсо=f(Тнв) представлен в виде таблицы, состоящей из пяти строк. Каждая строка соответствует точке на графике. Между точками график линейный.

| Температ. график                |                                 |                                                                     |  |
|---------------------------------|---------------------------------|---------------------------------------------------------------------|--|
| NՉ                              | Тнв Ттсо                        |                                                                     |  |
| 1.<br>2.<br>3.<br>4.<br>5.<br>∢ | -40°<br>-20°<br>0°<br>5°<br>15° | 70°<br>60°<br>50°<br>47° ⇔ <sup>±</sup><br>45° ⊂ <sub>Coxp.</sub> ≽ |  |

Пользователь должен задать пять значений температуры Ттсо в С° соответствующие пяти значениям Тнв.

Переход по точкам таблицы осуществляется кнопками «→», «←», увеличение/уменьшение значения кнопками «↑», «↓», ввод параметра – нажать «→» в крайнем правом положении «Coxp.», выход без сохранения – нажать «←» в крайнем левом положении «Не coxp.».

#### 6.2.6.2 Пункт меню «Коэффициент влияния»

Пункт меню «Коэффициент влияния» служит для задания численного значения коэффициента влияния К. Коэффициент К определяет степень влияния превышения температуры в обратном трубопроводе теплосети на управление задвижкой Кр. При значении К равным нулю ограничение температуры в обратном трубопроводе не производится. Чем больше К, тем точнее производится поддержание температуры Ттсо согласно температурному графику, но тем на большую величину уменьшится температура Тп в контуре отопления у потребителя.

Когда этот режим включен, то уставка температуры вычисляется следующим образом:

если Ттсо < f(Тнв), то Tп = f(Тнв)

если Ттсо > f(Tнв), то Tп = Tп - (Ттсо - f(Tнв))\*К

где:

Тп – уставка температуры подачи системы отопления;

Ттсо – температура в обратном трубопроводе теплосети (обратки);

f(Tнв) — значение уставки температуры подачи системы отопления по температурному графику;

К – коэффициент влияния.

| Коэфф. влиян | ния            |
|--------------|----------------|
|              | $\bigcirc^{+}$ |
| 0.30         |                |
| ↓ He coxp.   | Coxp. 〉        |

Пользователь вводит значение коэффициента К, который может быть только положительным в диапазоне (0,00 - 4,00).

Увеличение/уменьшение значения осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

#### 6.2.7 Пункт меню «Ограничение по подаче TC»

Пункт меню «Ограничение при подаче TC» позволяет задать параметры, необходимые для ограничения температуры в трубопроводе подачи теплосети в соответствии с графиком Тпмах=f(Tтсп). Это позволяет ограничивать потребление тепла из теплосети.



Когда этот режим включен, то уставка температуры вычисляется следующим образом:

Тп = min (Тп, f (Ттсп))

где:

Тп – уставка температуры подачи системы отопления;

Ттсп – температура в подающем трубопроводе теплосети;

f(Ттсп) — значение уставки температуры подачи системы отопления по графику ограничения.

Настройки используются только для режима «Отопление».

Выбор пункта меню осуществляется кнопками « $\uparrow$ », « $\downarrow$ », ввод параметра – нажать « $\rightarrow$ ».

Меню содержит следующие пункты:

Таблица 18 – Пункты меню «Ограничение по Ттсп»

| Пункт меню              | Описание                                             |  |
|-------------------------|------------------------------------------------------|--|
| 1. Включено             | Разрешить или запретить ограничение температуры Ттсп |  |
| 2. Температурный график | Задание точек температурного графика Тп мах=f(Ттсп)  |  |

#### 6.2.7.1 Пункт меню «Включено»

Пункт меню «Включено» служит для включения режима ограничения температуры подачи сетевой воды Ттсп. Ограничение производиться в соответствии с графиком Тп мах=f(Ттсп).

| Включено   |              |  |
|------------|--------------|--|
|            | $^{\dagger}$ |  |
| ДА         |              |  |
| ↓ He coxp. | Coxp. 〉      |  |

Пользователь вводит «Да» для включения режима ограничения Ттсп и «Нет» - для выключения.

Изменение состояния осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

## 6.2.7.2 Пункт меню «Температурный график»

Температурный график Тп мах=f(Ттсп) представлен в виде таблицы, состоящей из пяти строк. Каждая строка соответствует точке на графике. Между точками график линейный. Этот график определяет максимальную температуру подачи системы отопления Тп мах в зависимости от температуры подачи сетевой воды Ттсп.

| Температ. график                |                                   |                                                        |  |
|---------------------------------|-----------------------------------|--------------------------------------------------------|--|
| NՉ                              | Ттсп Тп мах                       |                                                        |  |
| 1.<br>2.<br>3.<br>4.<br>5.<br>∢ | 70°<br>75°<br>80°<br>104°<br>120° | 50°<br>54°<br>60°<br>70° ⇔ <sup>±</sup><br>80° Coxp. ◊ |  |

Пользователь должен задать пять значений температуры Тп мах в С° соответствующие пяти значениям Ттсп.

Переход по точкам таблицы осуществляется кнопками «→», «←», увеличение/уменьшение значения кнопками «个», «↓», ввод параметра – нажать «→» в крайнем правом положении «Coxp.», выход без сохранения – нажать «←» в крайнем левом положении «Не сохp.».

### 6.2.8 Пункт меню «Влияние Т комнатной»

Пункт меню «Влияние Т комнатной» позволяет задать параметры, необходимые для корректировки температуры подачи Тп в зависимости от комнатной температуры в помещении, где установлен дополнительный датчик температуры Тк. Это позволяет создавать более комфортные условия в помещении.



Выбор пункта меню осуществляется кнопками « $\uparrow$ », « $\downarrow$ », ввод параметра – нажать « $\rightarrow$ ».

Когда это режим включен, т.е К ≠ 0, то уставка температуры вычисляется следующим образом:

Тп = Тп + (Ту - Тк)\*К

где:

Тп – уставка температуры подачи системы отопления;

Ту – уставка комнатной температуры;

Тк – комнатная температура;

К – коэффициент влияния комнатной температуры.

Меню содержит следующие пункты:

| Таблица 19 — I | Тункты меню | «Влияние Т | комнатной» |
|----------------|-------------|------------|------------|
|----------------|-------------|------------|------------|

| Пункт меню                 | Описание                                                             |
|----------------------------|----------------------------------------------------------------------|
| 1. Включено                | Разрешить или запретить режим регулирования по комнатной температуре |
| 2. Уставка Т комнатной     | Задание уставки Ту комнатной температуры в °С                        |
| 2. Коэффициент влияния (К) | Задание коэффициента влияния К                                       |

#### 6.2.8.1 Пункт меню «Включено»

Пункт меню «Включено» служит для включения режима влияния комнатной температуры Тк. Ограничение производиться в соответствии с уставкой Ту комнатной температуры.

| Включено   |                      |
|------------|----------------------|
|            | ${\bigtriangledown}$ |
| ДА         |                      |
| ⟨ He coxp. | Coxp. 〉              |

Пользователь вводит «Да» для включения влияния комнатной температуры и «Нет» для выключения.

Изменение состояния осуществляется кнопками «个», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

#### 6.2.8.2 Пункт меню «Уставка Т комнатной»

Пункт меню «Уставка Т комнатной» служит для задания численного значения уставки температуры в комнате Ту. Регулятор будет поддерживать температуру в комнате в соответствии с этой уставкой.

| Уставка Т комнат. |                |  |
|-------------------|----------------|--|
|                   | $\bigcirc^{+}$ |  |
| 24 0              |                |  |
| 24                | C              |  |
| ↓ He coxp.        | Coxp. 〉        |  |

Пользователь вводит значение уставки Ту. в градусах Цельсия в диапазоне от 10 °C до 30 °C.

Увеличение/уменьшение значения осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

#### 6.2.8.3 Пункт меню «Коэффициент влияния»

Пункт меню «Коэффициент влияния» служит для задания численного значения коэффициента влияния К. Коэффициент К определяет степень влияния температуры в помещении Тк на управление задвижкой Кр. При значении К = 0 влияние комнатной температуры отсутствует. Чем больше К, тем точнее производится поддержание температуры Тк согласно уставке Ту, но тем больше температура Тп отклоняется от заданного значения температурным графиком.

| Коэфф. влия | ния          |
|-------------|--------------|
|             | $^{\dagger}$ |
| 3.0         |              |
| ↓ He coxp.  | Coxp. 〉      |

Пользователь вводит значение коэффициента Кп, который может быть только положительным (от 0.0 до 9.9).

Увеличение/уменьшение значения осуществляется кнопками «个», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

## 6.2.9 Пункт меню «Приоритет ГВС»

Пункт меню «Приоритет ГВС» служит для задания режима приоритета контура ГВС над контуром отопления (схемы 8 и 9).

| Приоритет ГВС                                                                                                                                                                                            | $\Rightarrow$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| <ol> <li>Включено<br/>Да</li> <li>Параметры активации<br/>10 С в течение 60 сек</li> <li>Пониж. уставки отопления<br/>на 10 С</li> <li>Интервалы действия<br/>08:00 - 11:00<br/>19:00 - 22:00</li> </ol> |               |

Режим «Приоритет ГВС» активируется, если одновременно выполняются следующие условия:

- 1. другой канал регулирования контроллера это контур отопления;
- 2. разрешено регулирование клапаном ГВС;
- 3. исправен датчик температуры на подаче ГВС;
- 4. клапан ГВС открыт на 100 %;
- 5. разрешен режим приоритета ГВС;
- 6. текущее время находится внутри разрешенных интервалов (интервалы действия);
- 7. температура подачи ГВС ниже заданной на определенную величину в течение заданного времени (параметры активации).

При выполнении всех этих условий температура уставки Тп контура отопления снижается на заданную величину.

Режим «Приоритет ГВС» сбрасывается при условии:

- 1. отключено регулирование клапаном ГВС;
- 2. неисправен датчик температуры на подаче ГВС;
- 3. текущее время вышло за пределы разрешенных интервалов.

#### 6.2.9.1 Пункт меню «Включено»

Пункт меню «Включено» служит для разрешения активации/сброса режима приоритета ГВС.

| Включено   |                       |
|------------|-----------------------|
|            | $\bigoplus_{i=1}^{+}$ |
| ДА         |                       |
| ↓ He coxp. | Coxp. 〉               |

Пользователь вводит «Да» для включения и «Нет» для выключения режима «Приоритет ГВС».

Изменение состояния осуществляется кнопками «个», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

## 6.2.9.2 Пункт меню «Параметры активации»

Пункт меню «Параметры активации» служит для задания параметров активации режима приоритета ГВС.

| Парам. активаь          | ции                   |  |
|-------------------------|-----------------------|--|
|                         | $\bigoplus^{\!\!\!+}$ |  |
| Тп<Ту на ∶ <u>10</u> °С |                       |  |
| в течение: 60 сек       |                       |  |
|                         |                       |  |
| ↓ He coxp.              | Coxp. 〉               |  |

Необходимо задать два параметра: величину падения температуры ГВС и интервал времени, в течение которого это падение наблюдается.

Переход к следующему параметру осуществляется кнопками «→», «←», увеличение/уменьшение значения кнопками «↑», «↓», ввод параметра – нажать «→» в крайнем правом положении «Сохр.», выход без сохранения – нажать «←» в крайнем левом положении «Не сохр.».

#### 6.2.9.3 Пункт меню «Понижение уставки отопления»

Необходимо задать значение, на которое необходимо снизить уставку температуры контура отопления после активации режима приоритета ГВС.

| Пониж.     | отопления |                |
|------------|-----------|----------------|
|            |           | $\bigcirc^{+}$ |
|            | 10 °C     |                |
| ↓ He coxp. |           | Coxp. 〉        |

Увеличение/уменьшение значения осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

#### 6.2.9.4 Пункт меню «Интервалы действия»

Необходимо задать два интервала времени за сутки, в течение которых действует режим приоритета ГВС.

| Интерв. действия |       |                |  |
|------------------|-------|----------------|--|
| С                | до    |                |  |
| 08:00            | 11:00 |                |  |
| 19:00            | 22:00 |                |  |
|                  | 4     | $\bigcirc^{+}$ |  |
| 4                |       | Coxp. 〉        |  |

Каждый интервал не может превышать 3 часа.

Переход к следующему параметру осуществляется кнопками «→», «←», увеличение/уменьшение значения кнопками «↑», «↓», ввод параметра – нажать «→» в крайнем правом положении «Сохр.», выход без сохранения – нажать «←» в крайнем левом положении «Не сохр.».

# 6.3 Пункт меню «Управление клапаном»

Пункт меню «Управление клапаном» позволяет задать параметры, необходимые для правильной работы регулирующего клапана. Настройки используются для всех типов контуров.

| Упр. клапаном                                               | $\Rightarrow$ |
|-------------------------------------------------------------|---------------|
| 1. Коэффициент k                                            |               |
| 0.070<br>2. Интервал управления<br>10 сек                   |               |
| <ol> <li>Число шагов клапана<br/>100</li> </ol>             |               |
| <ol> <li>Полное время хода клап.</li> <li>60 сек</li> </ol> |               |
| 5. Юстировка клапана<br>ДА 3:00                             |               |

Выбор пункта меню осуществляется кнопками « $\uparrow$ », « $\downarrow$ », ввод параметра – нажать « $\rightarrow$ ».

Меню содержит следующие пункты.

| Пункт меню             | Описание                                               |  |
|------------------------|--------------------------------------------------------|--|
| 1. Коэффициент k       | Задание коэффициента регулирования k (усиления)        |  |
| 2. Интервал управления | Задание интервала управления Δt, с                     |  |
| 3. Число шагов         | Задание количества шагов клапана                       |  |
| 4. Полное время хода   | Задание времени полного хода клапана, сек              |  |
| 5. Юстировка клапана   | Включение автоматической ежесуточной защиты от закиса- |  |
|                        | ния механизмов клапана и калибровки начальной точки    |  |
|                        | хода клапана                                           |  |

## 6.3.1 Пункт меню «Коэффициент k»

Пункт меню «Коэффициент k» служит для задания коэффициента k усиления выходного сигнала регулятора, используемого для управления регулирующим клапаном.

| Коэффиц. k |         |
|------------|---------|
|            | $^{+}$  |
| 0.07       | 0       |
| ↓ He coxp. | Coxp. 〉 |

Пользователь вводит значение коэффициента k. Значение коэффициента может быть только положительным.

Коэффициент k оказывает значительное влияние на переходной процесс регулирования. Коэффициент регулирования k и интервал управления Δt устанавливаются опытным путём на объекте по характеру поддержания температуры уставки (см. приложение 2).

Увеличение/уменьшение значения осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

### 6.3.2 Пункт меню «Интервал управления»

Пункт меню «Интервал управления» служит для задания интервала управления Δt, используемого для управления регулирующим клапаном. В моменты времени, равные интервалу Δt, вычисляется управляющее воздействие на регулирующий клапан. Интервал управления Δt устанавливают опытным путём на объекте по характеру поддержания температуры уставки (см. приложение 2).



Пользователь вводит значение длительности интервала управления ∆t в секундах. Увеличение/уменьшение значения осуществляется кнопками «↑», «↓», ввод параметра нажать «→», выход без сохранения – нажать «←».

## 6.3.3 Пункт меню «Число шагов»

Пункт меню «Число шагов» служит для задания количества шагов управления, используемых для управления регулирующим клапаном. Число шагов устанавливают опытным путём на объекте по характеру поддержания температуры уставки (см. приложение 2).

| Число шагов       |                 |
|-------------------|-----------------|
|                   | $\bigoplus^{+}$ |
| 100               |                 |
| <b>√</b> Не сохр. | Coxp. 〉         |

Пользователь вводит значение количества шагов управления.

Увеличение/уменьшение значения осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

#### 6.3.4 Пункт меню «Полное время хода клапана»

Пункт меню «Полное время хода клапана» служит для ввода паспортного времени полного хода регулирующего клапана из конечных состояний «закрыто» и «открыто».

Используется для вычисления длительности шага управления, используемого для управления регулирующим клапаном. Этот параметр берется из паспорта регулирующего клапана.

| Время хода клап. |        |              |
|------------------|--------|--------------|
|                  |        | $^{\dagger}$ |
|                  | 60 сек |              |
|                  |        | Coxp. 〉      |

Пользователь вводит значение времени полного хода в секундах.

Увеличение/уменьшение значения осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

#### 6.3.5 Пункт меню «Юстировка клапана»

Пункт меню «Юстировка клапана» служит для включения автоматического принудительного закрывания один раз в сутки задвижки регулирующего клапана Кр и возвращения задвижки клапана в исходное положение. Это предотвращает закисание механизмов клапана. Также во время юстировки осуществляется определение «начальной точки» хода штока клапана для более точного отображения на экране его состояния в % от полностью закрытого состояния.

| Юстир. клапана                            | $\Leftrightarrow$ |
|-------------------------------------------|-------------------|
| 1. Включено                               |                   |
| да<br>2. Время юстировки клапана<br>03:00 |                   |
|                                           |                   |
|                                           |                   |
|                                           |                   |
|                                           |                   |

Выбор пункта меню осуществляется кнопками « $\uparrow$ », « $\downarrow$ », ввод параметра – нажать « $\rightarrow$ ».

Меню содержит следующие пункты.

### Таблица 21 – Пункты меню «Юстировка клапана»

| Пункт меню         | Описание                                                                                                   |  |
|--------------------|------------------------------------------------------------------------------------------------------------|--|
| 1. Включено        | Разрешить или запретить автоматическую юстировку кла-<br>пана                                              |  |
| 2. Время юстировки | Задание времени (час, минута) в течении суток, когда должна производиться автоматическая юстировка клапана |  |

#### 6.3.5.1 Пункт меню «Включено»

Пункт меню «Включено» служит для разрешения юстировки клапана.

| Включено   |                                                  |
|------------|--------------------------------------------------|
|            | $\overset{\leftarrow}{\bigtriangledown}_{-}^{+}$ |
| ДА         |                                                  |
| 🔇 He coxp. | Coxp. 〉                                          |

Пользователь выбирает разрешить (ДА) или запретить (НЕТ) ежесуточную юстировку клапана.

Изменение состояния осуществляется кнопками «个», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

### 6.3.5.2 Пункт меню «Время юстировки»

Пункт меню «Время юстировки» служит для ввода времени, когда должна быть произведена юстировка клапана.

| Время юстировки |         |
|-----------------|---------|
|                 | $^{t}$  |
| 44:             | ММ      |
| 03              | : 00    |
| ↓ He coxp.      | Coxp. ▷ |

Пользователь вводит значение времени (час, минута).

Увеличение/уменьшение значения осуществляется кнопками «个», «↓», выбор поля ввода кнопками «→», «←», ввод параметра – нажать «→» в крайнем правом положении «Сохр.», выход без сохранения – нажать «←» в крайнем левом положении «Не сохр.».

## 6.4 Пункт меню «Управление насосами»

Пункт меню «Управление насосами» позволяет задать параметры длительности включения циркуляционных насосов Hц1, Hц2, чередование их работы для равномерной наработки.

| Упр. насосами                                                                            | $\bigtriangledown$ |
|------------------------------------------------------------------------------------------|--------------------|
| 1. Вход управления<br>Автомат / Авария<br>2. Контроль работы<br>Датч. сухого хода        |                    |
| 3. Время разгона<br>20 сек<br>4. Время торможения<br>10 сек                              |                    |
| <ol> <li>Бауза после аварии</li> <li>40 сек</li> <li>Число попыток</li> <li>2</li> </ol> |                    |

Выбор пункта меню осуществляется кнопками « $\uparrow$ », « $\downarrow$ », ввод параметра – нажать « $\rightarrow$ ».

Меню содержит следующие пункты:

| Таблица 22 — Пvнкты меню «Уп | іравление насосами» |
|------------------------------|---------------------|
|------------------------------|---------------------|

| Пункт меню                                                   | Описание                                                                                                               |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 1. Вход управления                                           | Выбор назначения дискретного входа (DI3 – DI6) разрешения<br>работы циркуляционных насосов Нц1 и Нц2:                  |
|                                                              | «Автомат. режим» - при изменении состояния этого сигнала<br>не будет формироваться сигнал «Авария» (реле DO11);        |
|                                                              | «Автомат / Авария» - при изменении состояния этого сигнала<br>будет формироваться сигнал «Авария» (реле DO11);         |
| 2. Контроль работы                                           | Выбор типа датчика, используемого для защиты циркуляци-<br>онных насосов Нц1, Нц2:                                     |
|                                                              | «Перепад давления» - датчик перепада давления вход/вы-<br>ход насоса;                                                  |
|                                                              | «Датчик сухого хода» - датчик сухого хода на входе насоса;                                                             |
| 3. Время разгона                                             | Задание интервала времени, необходимого для включения насоса, с                                                        |
| 4. Время торможения                                          | Задание интервала времени, необходимого для останова насоса, с                                                         |
| 5. Пауза после аварии                                        | Задание интервала времени между аварийным отключе-<br>нием насоса и последующим его включением, с                      |
| 6. Число попыток                                             | Задание количества попыток повторного включения насоса в случае его аварийного отключения                              |
| 7. Работа с чередованием                                     | Включение режима чередования во времени работы двух<br>насосов (да/нет)                                                |
| 8. Интервал чередования                                      | Задание временного интервала чередования работы насоса, после которого произойдет переключение одного насоса на другой |
| <ol> <li>9. Не показывать отклю-<br/>ченный насос</li> </ol> | Отключенный насос не будет отображаться на основном экране.                                                            |

## 6.4.1 Пункт меню «Вход управления»

Пункт меню «Вход управления» служит для выбора назначения дискретных входов разрешения работы циркуляционных насосов Hц1, Hц2 (входы DI3-6). Сигналы на этих входах могут формировать сигнал «Авария», например, если к ним подключено устройство защиты насоса (тепловое реле и проч.). При срабатывании устройства защиты изменится состояние разрешения работы насоса, насос будет остановлен и сформируется сигнал «Авария» (реле DO11).



Пользователь выбирает «Автомат. режим», если при изменении состояния сигнала разрешения работы насоса (входы DI3-6) не будет формироваться сигнал «Авария» (реле DO11).

Пользователь выбирает «Автомат/Авария», если при изменении состояния сигнала разрешения работы насоса (входы DI3-6) будет формироваться сигнал «Авария» (реле DO11).

Изменение состояния осуществляется кнопками «个», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

## 6.4.2 Пункт меню «Контроль работы»

Пункт меню «Контроль работы» служит для выбора типа датчика защиты насоса. Это может быть, как датчик перепада давления «вход-выход», так и датчик сухого хода, установленный на входе насоса.

| Контроль работы  |                    |
|------------------|--------------------|
|                  | $\bigtriangledown$ |
| Перепад давления |                    |
| ↓ He coxp.       | Coxp. 〉            |

Пользователь выбирает одно из двух возможных значений.

Изменение состояния осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

#### 6.4.3 Пункт меню «Время разгона»

Пункт меню «Время разгона» служит для задания интервала времени выхода (разгона) насоса на номинальную производительность после подачи напряжения питания. В течение этого времени сигналы с датчика перепада давления «вход-выход» поступают, но не обрабатываются. Через время разгона давление на выходе насоса достигнет рабочего значения и регулятор начнет контроль датчика давления.

| Время разгона |                 |
|---------------|-----------------|
|               | $\bigoplus^{+}$ |
| 20 ce         | эк              |
|               |                 |
|               | Coxp. 〉         |

Пользователь вводит значение времени на включение в сек.

Увеличение/уменьшение значения осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

### 6.4.4 Пункт меню «Время торможения»

Пункт меню «Время торможения» служит для задания защитного интервала времени, необходимого для останова насоса после снятия напряжения питания.

| Время торможения |            |  |
|------------------|------------|--|
|                  | ⇔ <u>t</u> |  |
| 1                | 0 сек      |  |
| ↓ He coxp.       | Coxp. 〉    |  |

Пользователь вводит значение времени на останов в сек.

Увеличение/уменьшение значения осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

## 6.4.5 Пункт меню «Пауза после аварии»

Пункт меню «Пауза после аварии» служит для задания интервала времени для повторного включения насоса после его отключения в результате аварии. Сигнал аварии формирует датчик перепада давления или сухого хода, контролирующий работу насоса.

| Пауза после авар. |        |              |
|-------------------|--------|--------------|
|                   |        | $^{\dagger}$ |
|                   | 40 сек |              |
| ↓ He coxp.        |        | Сохр. 〉      |

Пользователь вводит значение паузы после аварии в сек.

Увеличение/уменьшение значения осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

## 6.4.6 Пункт меню «Число попыток»

Пункт меню «Число попыток» служит для задания количества попыток повторного включения насоса в случае его аварийного отключения. После исчерпания количества повторных включений насоса, если сигнал аварии не пропадает, то регулятор отключает насос и формирует тревожное сообщение «Авария» (реле DO11). Например, если задано число попыток 2, то при возникновении аварии насос будет выключен и один раз произведена попытка повторного включения.

| Число попыток |                                                |  |
|---------------|------------------------------------------------|--|
|               | $\stackrel{\text{\tiny (1)}}{\Longrightarrow}$ |  |
|               | 2                                              |  |
|               |                                                |  |
| He coxp.      | Coxp. 〉                                        |  |

Пользователь вводит значение количества попыток.

Увеличение/уменьшение значения осуществляется кнопками « $\uparrow$ », « $\downarrow$ », ввод параметра — нажать « $\rightarrow$ », выход без сохранения — нажать « $\leftarrow$ ».

#### 6.4.7 Пункт меню «Работа с чередованием»

Пункт меню «Работа с чередованием» служит для включения режима чередования работы двух насосов. Это режим позволяет равномерно во времени задействовать в работу два насоса. Первый насос будет работать до времени наработки, заданной интервалом чередования, затем он выключится и включится второй насос. Аналогично второй насос отработает в течение времени, заданного интервалом чередования и снова включиться первый насос.



Пользователь вводит значение «Да» для включения чередования работы насосов и «Нет» - для выключения чередования.

Изменение состояния осуществляется кнопками «个», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

#### 6.4.8 Пункт меню «Интервал чередования»

Пункт меню «Работа с чередованием» служит для задания временного интервала работы насоса, по истечении которого первый насос выключается, а второй включается.

| Интервал черед. |                 |
|-----------------|-----------------|
|                 | $\bigoplus^{+}$ |
| 24 <b>y</b>     | iac             |
| 🗸 He coxp.      | Coxp. 〉         |

Пользователь вводит значение временного интервала в часах.

Увеличение/уменьшение значения осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

### 6.4.8 Пункт меню «Не показывать отключенный насос»

Пункт меню «Не показывать отключенный насос» служит для отображения отключенного насоса на основной экранной форме регулятора.

| Не показ. насос |              |
|-----------------|--------------|
|                 | $^{\dagger}$ |
| Д               | ٩            |
| 🗸 He coxp.      | Coxp. 〉      |

Пользователь вводит значение «Да» если отключенный насос не будет отображаться, и «Нет» - для отображения отключенного насоса.

Изменение состояния осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

## 6.5 Пункт меню «Управление подпиткой»

Пункт меню «Управление подпиткой» в независимой системе отопления позволяет выбрать тип датчика для управления клапаном подпитки (аналоговый датчик давления или дискретное реле давления), значения давления, при котором включается / выключается насос подпитки, максимально допустимое время работы насоса подпитки.



Выбор пункта меню осуществляется кнопками « $\uparrow$ », « $\downarrow$ », ввод параметра – нажать « $\rightarrow$ ».

Меню содержит следующие пункты:

| Таблица 23 — Пункты меню «Уг | правление подпиткой» |
|------------------------------|----------------------|
|------------------------------|----------------------|

| Пункт меню                        | Описание                                                                         |
|-----------------------------------|----------------------------------------------------------------------------------|
| 1. Источник управления            | Выбор типа датчика для автоматического управления под-<br>питкой.                |
|                                   | Примечание – Подпитка может быть принудительно выклю-<br>чена в сервисном меню.  |
| 2. Максимальная дли-<br>тельность | Задание максимально допустимого времени непрерывной работы насоса подпитки, мин. |

| 3. Включение подпитки  | Задание давления воды, при котором включается контур подпитки, бар (только для «Датчик»)     |
|------------------------|----------------------------------------------------------------------------------------------|
| 4. Отключение подпитки | Задание давления воды, при котором отключается контур<br>подпитки, бар (только для «Датчик») |

### 6.5.1 Пункт меню «Источник управления»

Пункт меню «Источник управления» служит для выбора типа датчика давления: аналоговый или реле давления. Если выбран датчик с аналоговым выходом, то необходимо задать значения давления для «Включение подпитки» и «Отключение подпитки».

Для схемы «Независимое отопление (5)» используется только датчик давления с аналоговым выходом.

Если выбрано реле давления, то уставки его срабатывания задаются непосредственно на реле.

| Источник управл. |                       |
|------------------|-----------------------|
|                  | $\bigoplus^{\dagger}$ |
| ДАТЧИК д         | авл.                  |
|                  | Coxp. 〉               |

Пользователь выбирает «ДАТЧИК» для управления подпиткой с помощью датчика давления с аналоговым выходом, например, (0-20) мА. В этом случае контроллер измеряет давление и сравнивает с заданными в настройках порогами «Включение подпитки» и «От-ключение подпитки».

Пользователь выбирает «РЕЛЕ» для управления подпиткой с помощью реле давления. На вход контроллера поступает двоичный сигнал: превышен порог, не превышен порог. Пороги настраиваются в реле.

Изменение состояния осуществляется кнопками «个», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

#### 6.5.2 Пункт меню «Максимальная длительность»

Пункт меню «Максимальная длительность» служит для задания максимально допустимого времени непрерывной работы насоса подпитки в минутах. Насос подпитки после запуска будет работать для повышения давления в контуре отопления не более этого времени, даже если давление не достигнет уставки на отключение. Таким образом, осуществляется защита от протечки в контуре отопления. При превышении этого времени насос отключится и будет сформирован сигнал «Авария» (реле DO11). Событие регистрируется в электронном журнале.

| Длительность |                 |
|--------------|-----------------|
|              | $\bigoplus^{+}$ |
| 10 MI        | ин              |
| 🔇 Не сохр.   | Сохр. 〉         |

Пользователь вводит значение максимально допустимого времени непрерывной работы насоса подпитки в минутах.

Увеличение/уменьшение значения осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

## 6.5.3 Пункт меню «Включение подпитки»

Пункт меню «Включение подпитки» служит для задания давления воды, при котором включается контур подпитки (насос и клапан), если используется аналоговый датчик давления (входы AI1-2).

| Вкл. подпит | ки              |
|-------------|-----------------|
|             | $\bigoplus^{*}$ |
| 3.0         | bar             |
| 🗸 He coxp.  | Coxp. 〉         |

Пользователь вводит значение давления воды в бар, при котором включается работа насосов подпитки.

Увеличение/уменьшение значения осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

## 6.5.4 Пункт меню «Отключение подпитки»

Пункт меню «Отключение подпитки» служит для задания давления воды, при котором отключается контур подпитки (насос и клапан), если используется аналоговый датчик давления (входы Al1-2).

| Откл. подпи | тки             |
|-------------|-----------------|
|             | $\bigoplus^{+}$ |
| 4.0         | bar             |
| He coxp.    | Coxp. 〉         |

Пользователь вводит значение давления воды в бар, при котором отключается работа насосов подпитки. Это значение должно быть больше, чем значение отключения контура подпитки, введенное в пункте выше.

Увеличение/уменьшение значения осуществляется кнопками «个», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

# 6.6 Пункт меню «Управление вентилятором»

Пункт меню «Управление вентилятором» позволяет задать параметры времени включения / остановки вентилятора в режиме «Вентиляция».

| Упр. вентилят. 🛛 🗧                                                                                                                                                       | $\geq$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1. Время разгона           20 сек           2. Время торможения           10 сек           3. Пауза после аварии           30 сек           4. Число попыток           2 | ]      |

Выбор пункта меню осуществляется кнопками « $\uparrow$ », « $\downarrow$ », ввод параметра – нажать

Меню содержит следующие пункты.

«→».

#### Таблица 24 – Пункты меню «Упр. вентилятором»

| Пункт меню            | Описание                                                                                        |
|-----------------------|-------------------------------------------------------------------------------------------------|
| 1. Время разгона      | Задание времени, необходимого для включения вентилятора, с                                      |
| 2. Время торможения   | Задание времени, необходимого для останова вентилятора, с                                       |
| 3. Пауза после аварии | Задание паузы между аварийным отключением вентилятора и последующим его включением, с           |
| 4. Число попыток      | Задание количества попыток повторного включения вентиля-<br>тора в случае аварийного отключения |

## 6.6.1 Пункт меню «Время разгона»

Пункт меню «Время разгона» служит для задания интервала времени, необходимого для выхода вентилятора на номинальную производительность. В течение этого времени сигналы с датчика перепада давления «вход-выход вентилятора» поступают, но не обрабатываются. Через интервал включения давление на выходе вентилятора достигнет рабочего значения и регулятор начнет контроль датчика давления.

| Время разгона |                                    |
|---------------|------------------------------------|
|               | $\bigoplus^{\!\!\!\!\!\!\!\!\!\!}$ |
| 20 сек        |                                    |
| ↓ He coxp.    | Coxp. 〉                            |

Пользователь вводит значение времени на включение в сек.

Увеличение/уменьшение значения осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

## 6.6.2 Пункт меню «Время торможения»

Пункт меню «Время торможения» служит для задания интервала времени, необходимого для останова вентилятора после его выключения.

| Время торможения |        |                       |
|------------------|--------|-----------------------|
|                  |        | $\bigoplus^{\!\!\!+}$ |
|                  | 10 сек |                       |
| ↓ He coxp.       |        | Coxp. 〉               |

Пользователь вводит значение времени на останов в сек.

Увеличение/уменьшение значения осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

## 6.6.3 Пункт меню «Пауза после аварии»

Пункт меню «Пауза после аварии» служит для задания интервала времени для повторного включения вентилятора после его отключения в результате аварии. Сигнал аварии формирует датчик перепада давления, контролирующий работу вентилятора.

| Пауза после авар. |                |
|-------------------|----------------|
|                   | $\bigcirc^{+}$ |
|                   | 30 сек         |
| ↓ He coxp.        | Coxp. 〉        |

Пользователь вводит значение паузы после аварии в сек.

Увеличение/уменьшение значения осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

## 6.6.4 Пункт меню «Число попыток»

Пункт меню «Число попыток» служит для задания количества попыток повторного включения вентилятора в случае аварийного отключения. После исчерпания количества повторных включений, если сигнал аварии не пропадает, то регулятор отключает вентилятор и формирует тревожное сообщение о его неисправности. Например, если задано число попыток 2, то при возникновении аварии вентилятор будет выключен и один раз произведена попытка повторного включения.

| Число попыток |              |
|---------------|--------------|
|               | $^{\dagger}$ |
| 2             | 2            |
| He coxp.      | Coxp. 〉      |

Пользователь вводит значение количества попыток.

Увеличение/уменьшение значения осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

## 6.7 Пункт меню «Заводские установки»

Пункт меню «Заводские установки» служит для задания типовых параметров выбранной схемы регулирования, предустановленных изготовителем.



Для загрузки заводских (типовых) установок нажать «→» (Да), выход без сохранения – нажать «←» (Нет).

# 7 Журнал событий

Контроллер ведет электронный журнал событий, в том числе и аварий для каждого канала регулирования. Журнал храниться в энергонезависимой памяти прибора.

Для каждого канала имеются два журнала событий: текущих событий (аварий) и всех событий с метками времени:

| События схемы 1    | $\Leftrightarrow$ |
|--------------------|-------------------|
| 1. Текущие события |                   |
| 2. Все сооытия     |                   |
|                    |                   |
|                    |                   |
|                    |                   |
|                    |                   |

Переход по строкам меню осуществляется кнопками «个», «↓», выбор пункта – нажать «→», выход из меню – нажать «←».

Таблица 25 – Виды журналов событий

| Пункт меню      | Описание                                                               |
|-----------------|------------------------------------------------------------------------|
| Текущие события | - просмотр текущих событий аварий и квитирование событий вруч-<br>ную; |
| Все события     | - просмотр всех событий с метками времени и даты.                      |

# 7.1 Пункт меню «Текущие события»

Текущие аварийные события отображаются в виде списка, количество строк (до 11 шт.) которого зависит от наличия в данный момент отказов или аварий.

Некоторые аварии (отображены красным цветом) можно квитировать, т.е. вручную сбросить.



Переход по строкам меню осуществляется кнопками « $\uparrow$ », « $\downarrow$ », для квитирования нажать « $\rightarrow$ », выход из меню – нажать « $\leftarrow$ ».

В журнале «Текущие события» регистрируются следующие виды отказов.

Таблица 26 – Виды отказов в журнале «Текущие события»

| Отказ               | Описание                                                                                 |
|---------------------|------------------------------------------------------------------------------------------|
| Т° обратка ТС отказ | - неисправен датчик температуры Ттсо в обратной трубе тепло-<br>сети;                    |
| Т° подача ТС отказ  | - неисправен датчик температуры Ттсп в подающей трубе теп-<br>лосети;                    |
| Т ° подачи отказ    | - неисправен датчик температуры Тп в трубе подачи контура отопления или ГВС;             |
| Т° уличная отказ    | - неисправен датчик наружной температуры Тнв воздуха;                                    |
| Т° комнатная отказ  | - неисправен датчик комнатной температуры Тп воздуха;                                    |
| Р обратки отказ     | - неисправен датчик давления в обратной трубе контура отоп-<br>ления или ГВС;            |
| Нц1 авария          | - неисправность циркуляционного насоса по срабатыванию                                   |
| Нц2 авария          | датчика перепада давления;                                                               |
| Подпитка время      | - превышено заданное время работы насоса подпитки;                                       |
| Нп1 авария          | - неисправность насоса подпитки по срабатыванию датчика су-                              |
| Нп2 авария          | хого хода;                                                                               |
| Сухой ход подпитки  | срабатывание датчика сухого хода подпитки;                                               |
| Сухой ход           | - срабатывание датчика сухого хода циркуляционного насоса;                               |
| Т° подачи > МАХ     | - превышение температуры подачи выше заданного значения;                                 |
| Т° подачи < MIN     | - падение температуры подачи ниже заданного значения;                                    |
| Стоп дистанционно   | - регулятор остановлен по команде диспетчера, поступившей дистанционно по сети Ethernet; |
| Нц1 отключен        | - циркуляционный насос Нц1, Нц2 отключен в летнем режиме;                                |
| Нц2 отключен        |                                                                                          |
| Нп1 отключен        | - насос подпитки Нп1, Нп2 отключен в летнем режиме;                                      |
| Нп2 отключен        |                                                                                          |

| Подпитка отключена | - насос подпитки и клапан подпитки отключены в летнем ре-                                                           |
|--------------------|---------------------------------------------------------------------------------------------------------------------|
|                    | жиме;                                                                                                               |
| Клапан отключен    | - клапан подпитки отключен в летнем режиме;                                                                         |
| Приоритет ГВС      | - включен режим приоритета ГВС;                                                                                     |
| Вентилятор авария  | - неисправность вентилятора по срабатыванию датчика пере-                                                           |
|                    | пада давления;                                                                                                      |
| Т° приточки отказ  | - неисправен датчик температуры приточного воздуха;                                                                 |
| Т° нагрева отказ   | - неисправен датчик температуры в теплосети Ттсо;                                                                   |
| Заморозка          | - срабатывание датчика температуры воздуха в случае замерза-<br>ния теплообменника;                                 |
| Насос авария       | <ul> <li>неисправность циркуляционного насоса теплосети по сраба-<br/>тыванию датчика перепада давления;</li> </ul> |
| Стоп               | - останов регулятора системы вентиляции вручную местно;                                                             |
| Насос отключен     | - циркуляционный насос теплосети отключен в летнем режиме.                                                          |

Сброс аварии необходимо подтвердить в отдельном окне:

| Сбросить Авари<br>Нц 1 авария | 1ю? |
|-------------------------------|-----|
| Нет                           | да⟩ |

Для сброса нажать «→», выход из меню – нажать «←».

Если аварийный сигнал или состояние продолжает действовать, то после сброса аварийное сообщение появиться вновь.

## 7.2 Пункт меню «Все события»

В журнале регистрируются все события отказов насосов, вентиляторов, датчиков температуры и давления, их назначения, с метками времени даты (день, месяц) и времени (час, минута) наступления события, а также служебные события.

| Все события 1                                                                 |                                                                                        |                                                                                                                                                                          | $\Leftrightarrow$ |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 29.09<br>01.10<br>02.10<br>10.10<br>10.10<br>11.10<br>12.10<br>13.10<br>13.10 | 14:11<br>04:54<br>12:09<br>01:20<br>23:10<br>23:55<br>09:44<br>06:33<br>18:00<br>19:21 | Т подачи отказ<br>Р обрат. отказ<br>Т уличн. отказ<br>Сухой ход<br>Нц1 авария<br>Клапан отключ.<br>Т обрат. отказ<br>Сух.ход подпит<br>Стоп дистанц.<br>Нц1 авария снято |                   |

Пользователь может просмотреть все события в виде списка.
Просмотр строк журнала осуществляется кнопками « $\uparrow$ », « $\downarrow$ », вывод из журнала – нажать « $\leftarrow$ ».

В журнале регистрируются следующие виды отказов.

| Таблица 27 – Виды о | тказов | в журнале | событий |
|---------------------|--------|-----------|---------|
|                     |        |           |         |

| Отказ                         | Описание                                                                                                                                 |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Т°обр.ТС отказ                | - неисправен датчик температуры Ттсо в обратной трубе теплосети;                                                                         |
| Т°под.ТС отказ                | - неисправен датчик температуры Ттсп в подающей трубе теплосети;                                                                         |
| Т°подачи отказ                | - неисправен датчик температуры Тп в трубе подачи контура отопле-<br>ния или ГВС;                                                        |
| Т°уличн. отказ                | - неисправен датчик наружной температуры Тнв воздуха;                                                                                    |
| Т°комн. отказ                 | - неисправен датчик комнатной температуры Тп воздуха;                                                                                    |
| Р обрат. отказ                | - неисправен датчик давления в обратной трубе контура отопления;                                                                         |
| Нц1 авария,<br>Нц2 авария     | - неисправен насос 1 или 2 системы «Отопление» или «ГВС» (по срабатыванию датчика перепада давления, температуры электродвига-<br>теля); |
| Подпитка время                | - авария по контуру подпитки системы «Отопление» (превышено за-<br>данное время работы насоса подпитки);                                 |
| Нп1 авария,<br>Нп2 авария     | - неисправен насос подпитки 1 или 2 системы «Отопление»;                                                                                 |
| Сух. ход подп.                | - срабатывание датчика сухого хода насоса подпитки;                                                                                      |
| Сухой ход                     | - срабатывание датчика сухого хода циркуляционного насоса;                                                                               |
| Т°подачи > MAX                | - превышение температуры подачи выше заданного значения;                                                                                 |
| Т°подачи < MIN                | - падение температуры подачи ниже заданного значения;                                                                                    |
| Стоп дистанц.                 | - регулятор остановлен по команде диспетчера, поступившей ди-<br>станционно по сети Ethernet;                                            |
| Нц1 отключен,<br>Нц2 отключен | - отключение работы циркуляционных насосов Нц1, Нц2 в летнем режиме;                                                                     |
| Нп1 отключен,<br>Нп2 отключен | - отключение работы насосов подпитки Нп1, Нп2 в летнем режиме (схема 5);                                                                 |
| Подп. отключ.                 | - отключение работы насоса подпитки вручную в летнем режиме;                                                                             |
| Клапан отключ.                | - закрытие и отключение клапана в летнем режиме;                                                                                         |
| Вентил. авария                | - неисправен вентилятор (по срабатыванию датчика перепада дав-<br>ления) системы «Вентиляция»;                                           |
| Приоритет ГВС                 | - включен режим приоритета ГВС;                                                                                                          |
| Т°прит. отказ                 | - неисправен датчик температуры Тп воздуха на выходе системы «Вентиляция»;                                                               |

| Т°нагрев отказ | - неисправен датчик температуры Ттсо в обратной трубе теплосети системы «Вентиляция»;     |
|----------------|-------------------------------------------------------------------------------------------|
| Заморозка      | - срабатывание датчика заморозки теплообменника Тз системы «Вентиляция»;                  |
| Нц авария      | - неисправен насос системы «Вентиляция» (по срабатыванию дат-<br>чика перепада давления); |
| Стоп           | - регулятор системы «Вентиляция» остановлен вручную;                                      |
| Нц отключен    | - насос системы «Вентиляция» отключен.                                                    |

Пользователь может очистить весь журнал событий (удалить сообщения). Для очистки журнала нажать кнопку «Да →» во время просмотра журнала, «Нет ←» - возврат к просмотру журнала без удаления записей.

| Удалить все<br>из журна | записи<br>ала? |
|-------------------------|----------------|
| ↓ Нет                   | Да 〉           |
|                         |                |

# 8 Сервисное меню

Пункт меню «Сервисное меню» позволяет выполнить дополнительные функции во время эксплуатации контроллера. Набор пунктов сервисного меню зависит от выбранной схемы регулирования.

| Сервисное меню                                                                | $\Leftrightarrow$ |
|-------------------------------------------------------------------------------|-------------------|
| 1. Летний режим<br>2. Юстировка клапана<br>3. Управление подпиткой<br>АВТОМАТ |                   |

Переход по строкам меню осуществляется кнопками «↑», «↓», выбор пункта – нажать «→», выход из меню – нажать «←».

| Пункт меню      | Описание                                                       |
|-----------------|----------------------------------------------------------------|
| Летний режим /  | - отключение регулятора «Отопление»;                           |
| Отключить ГВС   | - отключение регулятора «ГВС»;                                 |
| Юстировка кла-  | - выполнить юстировку клапана для защиты от закисания механиз- |
| пана            | мов клапана и калибровки начальной точки хода клапана          |
| Управление под- | - режим управления подпиткой:                                  |
| питкой          |                                                                |

Таблица 28 – Пункты сервисного меню

|  | ОТКЛЮЧЕНО – отключить насос и клапан подпитки вручную;        |
|--|---------------------------------------------------------------|
|  | АВТОМАТ – включена работа насоса и клапана подпитки в автома- |
|  | тическом режиме.                                              |

# 8.1 Пункт меню «Летний режим»

Пункт меню «Летний режим» служит для включения работы канала «Отопление» регулятора в летнем режиме, когда не осуществляется регулирование температуры. В летнем режиме регулирующий клапан Кр переводиться в закрытое состояние и отключается, циркуляционные насосы Hц1, Hц2 отключаются.

| Установить л | етний режим:  |
|--------------|---------------|
| 1. Отключен  | ие и закрытие |
| 2 Отключен   | ие насосов    |
| циркуляц     | ии            |
| ∕Інет        | Ла            |

Для включения летнего режима – нажать «→», выход без изменения режима – нажать «←».

Если канал находится в летнем режиме, то в этом меню возможно перевести его в режим регулятора температуры.



Для отключения летнего режима – нажать « $\rightarrow$ », выход без изменения режима – нажать « $\leftarrow$ ».

# 8.2 Пункт меню «Отключить ГВС»

Пункт меню «Отключить ГВС» служит для включения работы канала «ГВС» регулятора в летнем режиме, когда не осуществляется регулирование температуры. В летнем режиме регулирующий клапан Кр переводиться в закрытое состояние и отключается, циркуляционные насосы Нц1, Нц2 отключаются.

| onono-child i bi | u:         |
|------------------|------------|
| 1. Отключение і  | и закрытие |
| 2. Отключение і  | насосов    |
| циркуляции       |            |
|                  | Лэ         |

Для отключения ГВС – нажать «→» (Да), выход без изменения режима – нажать «←» (Нет).

Если канал ГВС отключен, то в этом меню возможно его включить, т.е. перевести в режим регулятора температуры.

| Снять летний                  | режим:      |
|-------------------------------|-------------|
| 1. Автоматиче                 | оский режим |
| клапана                       |             |
| <ol> <li>Автоматиче</li></ol> | ский режим  |
| насосов цир                   | окуляции    |
| Нет                           | Да 🕽        |

Для включения ГВС – нажать «→» (Да), выход без изменения режима – нажать «←» (Нет).

# 8.3 Пункт меню «Юстировка клапана»

Пункт меню «Юстировка клапана» служит для однократной юстировки регулирующего клапана Кр вручную.

Юстировка представляет собой принудительное закрывание задвижки регулирующего клапана Кр и возвращение задвижки клапана в исходное положение. Это предотвращает закисание механизмов клапана. Также во время юстировки осуществляется определение «начальной точки» хода штока клапана для более точного отображения на экране его состояния в % от полностью закрытого состояния.



Для начала юстировки – нажать «→» (Да), выход без изменения режима – нажать «←» (Нет).

# 8.4 Пункт меню «Управление подпиткой»

Пункт меню «Управление подпиткой» служит для принудительного отключения насоса Нп и клапана Кп подпитки вручную. Если подпитка отключена, то клапан Кп закрыт и насос Нп выключен.

| Управл. п  | одпиткой |
|------------|----------|
|            |          |
| ABT        | OMAT     |
| ↓ He coxp. | Coxp. 〉  |

Пользователь выбирает:

«Отключено» - для отключения работы насоса Нп и клапана Кп подпитки;

«Автомат» - для включения автоматической работы насоса Нп и клапана Кп подпитки.

Выбор состояния осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

# 9 Рабочий календарь

Пункт меню «Рабочий календарь» позволяет задать праздничные дни в году, перенесенные рабочие дни и выходные дни недели в соответствии с утвержденным производственным календарем. Рабочий календарь используется регулятором для внесения коррекций в температурный график контуров отопления, вентиляции.



Выбор пункта меню осуществляется кнопками « $\uparrow$ », « $\downarrow$ », ввод параметра – нажать « $\rightarrow$ ».

Меню содержит следующие пункты.

Таблица 29 – Пункты меню «Рабочий календарь»

| Пункт меню             | Описание                                           |
|------------------------|----------------------------------------------------|
| 1. Праздничные дни     | Задание праздничных дней в году                    |
| 2. Рабочие дни         | Задания рабочих дней, перенесенных на выходные дни |
| 3. Выходные дни недели | Задание выходных дней недели                       |

# 9.1 Пункт меню «Праздничные дни»

Пункт меню «Праздничные дни» служит для задания праздничных дней в году в соответствии с утвержденным производственным календарем.

| Празднич. дни                                                                                             | $\bigtriangledown$ |
|-----------------------------------------------------------------------------------------------------------|--------------------|
| Январь 1<br>Январь 2<br>Январь 3<br>Январь 4<br>Февраль 23<br>Май 1<br>Май 1<br>Май 2<br>Май 9<br>Июнь 12 |                    |

Просмотр списка праздничных дней осуществляется кнопками «↑», «↓», выбор для изменения параметра – нажать «→».

Пользователь может выполнить следующие действия.

Таблица 30 – Действия пользователя с праздничными днями

| Пункт меню  | Описание                           |
|-------------|------------------------------------|
| 1. Добавить | Добавление нового праздничного дня |
| 2. Удалить  | Удаление праздничного дня          |
| 3. Изменить | Изменение даты праздничного дня    |

| Действие                   | $\bigtriangledown$ |
|----------------------------|--------------------|
| 1. + Добавить<br>2 Удалить |                    |
| 3. Изменить                |                    |
|                            |                    |
|                            |                    |
|                            |                    |

Выбор пункта меню осуществляется кнопками « $\uparrow$ », « $\downarrow$ », ввод параметра – нажать « $\rightarrow$ ».

При добавлении (изменении) нового праздничного для выбрать месяц и день.

| Добавить   |      |               |
|------------|------|---------------|
|            |      | $^{\text{+}}$ |
| Месяц      | День |               |
| Январь     | 01   |               |
|            |      |               |
| < Не сохр. |      | Coxp.         |

Переход по пунктам меню осуществляется кнопками « $\rightarrow$ », « $\leftarrow$ », увеличение/уменьшение значения кнопками « $\uparrow$ », « $\downarrow$ », ввод параметра – нажать « $\rightarrow$ » в крайнем правом положении «Coxp.», выход без сохранения – нажать « $\leftarrow$ » в крайнем левом положении «Не сохр.».

# 9.2 Пункт меню «Рабочие дни»

Пункт меню «Рабочие дни» служит для задания рабочих дней, перенесенных на выходные дни в году («черные субботы») в соответствии с утвержденным производственным календарем.

| Рабочие дни          | $\bigtriangledown$ |
|----------------------|--------------------|
| Январь 24<br>Июнь 19 |                    |
|                      |                    |
|                      |                    |
|                      |                    |
|                      |                    |

Просмотр списка перенесенных рабочих дней осуществляется кнопками «个», «↓», выбор для изменения параметра – нажать «→».

Пользователь может выполнить следующие действия: «Добавить», «Удалить» и «Изменить» аналогично меню праздничных дней.

# 9.3 Пункт меню «Входные дни»

Пункт меню «Выходные дни» служит для задания выходных дней недели. Галочка означает выходной день.

| Выходные дни                                                                                                                            |       |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------|
| <ol> <li>Понедельник</li> <li>Вторник</li> <li>Среда</li> <li>Четверг</li> <li>Пятница</li> <li>Суббота</li> <li>Воскресенье</li> </ol> |       |
| ⟨Выход Изме                                                                                                                             | нить₿ |

Просмотр списка выходных дней осуществляется кнопками «个», «↓», изменение состояния (установка/снятие галочки) – нажать «→», для выхода нажать «←».

# 10 Настройки контроллера

Пункт меню «Настройки контроллера» служит для настройки параметров контроллера, общих для все режимов и схем подключения, обновление или смены встроенного программного обеспечения контроллера.

| Настройка                                                                                                                                                                | $\langle \rangle$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1. Дата и время<br>2. Настройка датчиков<br>3. Настройка Ethernet<br>4. Настройка Modbus<br>5. Обновление ПО<br>6. Смена ПО<br>7. Клавиатура и экран<br>8. Об устройстве |                   |

Переход по пунктам меню осуществляется кнопками «↓», «↑». Выбор схемы - нажать «→». Выход – «Esc».

Пользователь может выполнить следующие действия.

| Таблица 31 – | Меню общ | их настроек | контроллера |
|--------------|----------|-------------|-------------|
|--------------|----------|-------------|-------------|

| Пункт меню            | Описание                                                 |
|-----------------------|----------------------------------------------------------|
| 1. Дата и время       | Ввод, корректировка встроенных часов и календаря         |
| 2. Настройка датчиков | Настройка параметров датчиков температуры                |
| 3. Настройка Ethernet | Настройка сетевых параметров прибора                     |
| 4. Настройка Modbus   | Настройка параметров интерфейса RS-485                   |
| 5. Обновление ПО      | Обновление версии встроенного ПО контроллера             |
| 6. Смена ПО           | Смена вида встроенного ПО контроллера                    |
| 7. Клавиатура и экран | Настройка параметров клавиатуры и дисплея                |
| 8. Об устройстве      | Просмотр заводского номера контроллера, номера версии ПО |
| 9. Перезагрузка       | Перезапуск встроенного ПО                                |

# 10.1 Пункт меню «Дата и время»

Пункт меню «Дата и время» служит для задания даты и времени встроенных часов контроллера и NTP сервера эталонного времени. Часы питаются от встроенного элемента питания CR2032 напряжением 3 В. В случае отключения сетевого напряжения питания 220В ход часов сохраняется.

| Дата и время                                                                                                                                                     | $\Diamond$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1. Установить           2. Получить автоматически           ДА           3. NTP сервер           ntp1.vniiftri.ru           4. Часовой пояс           UTC +03:00 |            |

Переход по пунктам меню осуществляется кнопками «↓», «↑». Выбор схемы - нажать «→». Выход – «Esc».

Меню состоит из следующих пунктов.

| Таблица 32 — Описание пунктов мен | ню «Дата и время» |
|-----------------------------------|-------------------|
|-----------------------------------|-------------------|

| Пункт меню                     | Описание                                                                                    |
|--------------------------------|---------------------------------------------------------------------------------------------|
| 1. Установить                  | Ввод вручную времени и даты                                                                 |
| 2. Получить автоматиче-<br>ски | Выбор режима автоматической корректировки часов с по-<br>мощью NTP сервера из сети Интернет |
| 3. NTP сервер                  | Ввод названия NTP сервера для автоматической корректи-<br>ровки часов                       |
| 4. UTC                         | Ввод часового пояса Всемирного координированного вре-<br>мени UTC                           |

## 10.1.1 Пункт меню «Установить»

Пункт меню «Установить» позволяет задать дату и время встроенных часов контроллера.

| Да | та и время           |                |
|----|----------------------|----------------|
|    |                      | $\bigcirc^{+}$ |
|    | ДД.ММ.ГГ<br>31.07.17 | ЧЧ:ММ<br>12:43 |
| 4  |                      | Coxp. 〉        |

Переход по пунктам меню осуществляется кнопками « $\rightarrow$ », « $\leftarrow$ », увеличение/уменьшение значения кнопками « $\uparrow$ », « $\downarrow$ », ввод параметра – нажать « $\rightarrow$ » в крайнем правом положении «Coxp.», выход без сохранения – нажать « $\leftarrow$ » в крайнем левом положении «Не сохр.».

Примечание – После нажатия на кнопку «→» в часы запишется установленное время:

<чч> <мм> 00 с.

## 10.1.2 Пункт меню «Получить автоматически»

Пункт меню «Получить автоматически» позволяет включить режим автоматической корректировки встроенных часов контроллера по данным NTP сервера точного времени в сети Интернет.



Переход по возможным значениям осуществляется кнопками «↓», «↑». Выбор схемы - нажать «→». Выход – «Esc».

## 10.1.3 Пункт меню «NTP сервер»

Пункт меню «NTP сервер» позволяет ввести название сайта NTP в сети Интернет, используемого для автоматической корректировки часов контроллера.

| NTP сервер       | $\bigoplus^{t}$ |
|------------------|-----------------|
| 1                | ~               |
| _ <b>m</b>       |                 |
| ntp1.vniiftri.ru |                 |
| 0                |                 |
| р                |                 |
|                  | Coxp. 〉         |

Переход по знакоместу символа текстовой строки с названием сайта осуществляется кнопками « $\rightarrow$ », « $\leftarrow$ », переход к предыдущему символу осуществляется кнопкой « $\uparrow$ », к последующему - « $\downarrow$ », ввод названия — нажать « $\rightarrow$ » в крайнем правом положении «Coxp.», выход без сохранения — нажать « $\leftarrow$ » в крайнем левом положении «Не сохр.».

## 10.1.4 Пункт меню «Часовой пояс»

Пункт меню «Часовой пояс» позволяет ввести часового пояса Всемирного координированного времени UTC.

| Часовой пояс |                                                                                        |
|--------------|----------------------------------------------------------------------------------------|
|              | $\bigotimes^{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |
| ЧЧ:ММ        |                                                                                        |
| UTC +03:00   |                                                                                        |
|              |                                                                                        |
| 4            | Coxp. 〉                                                                                |

Переход по знакоместу осуществляется кнопками «→», «←», переход к предыдущему числу осуществляется кнопкой «个», к последующему - «↓», ввод названия – нажать «→» в крайнем правом положении «Coxp.», выход без сохранения – нажать «←» в крайнем левом положении «Не сохp.».

# 10.2 Пункт меню «Настройка датчиков»

Пункт меню «Настройка датчиков» позволяет задать тип используемых датчиков температуры, подключенных к входам T1 – T5 контроллера, а также вид интерфейса датчиков давления, подключенных к входам AI1 – AI2.

| Настр.                                                        | датчиков                                                                                      | $\Leftrightarrow$ |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------|
| 1. T1<br>2. T2<br>3. T3<br>4. T4<br>5. T5<br>6. Al1<br>7. Al2 | DS18B20<br>Pt1000<br>NTC 10k-A<br>NTC 10k-B<br>Ni 1000 5000<br>4-20 mA (шунт 200 Ом<br>0-10 V | )                 |

Просмотр списка входов регулятора осуществляется кнопками «↑», «↓», выбор для изменения параметра – нажать «→».

Пользователь может выполнить следующие действия.

Таблица 33 – Действия пользователя в меню «Настройка датчиков»

| Пункт меню   | Описание                                                   |
|--------------|------------------------------------------------------------|
| 1. T1 – T5   | Выбор типа и настройка датчика температуры (входы Т1 – Т5) |
| 2. Al1 – Al2 | Выбор типа и настройка датчика давления (входы AI1 – AI2)  |

## 10.2.1 Пункты меню «Т1 – Т5»

Пункты меню «T1 – T5» служит для задания типа датчика температуры и его характеристик.



Просмотр пунктов меню осуществляется кнопками «个», «↓», выбор для изменения параметра – нажать «→».

Пользователь может выполнить следующие действия.

|         | ~ .  |          |               | <b>`</b>         | <b>`</b>  |                           |
|---------|------|----------|---------------|------------------|-----------|---------------------------|
| lahauua | 21 - | Hourmoua | nonsonamona d | ว พอบเก วกกักบบล | muna dami | μινα πρωπρηατικ           |
| ruonuuu | 54 - | дсистоил |               | э мспю зибипия   | munu oum  | 1474 1116/1116/2011172/01 |
|         |      | 1 1      |               |                  |           |                           |

| Пункт меню                 | Описание                                              |
|----------------------------|-------------------------------------------------------|
| 1. Тип датчика             | Выбор типа датчика температуры                        |
| 2. Коррекция               | Ввод значения величины коррекции температуры, °С      |
| 3. MIN допустимое значение | Ввод минимального значения из рабочего диапазона, °С  |
| 4. МАХ допустимое значение | Ввод максимального значения из рабочего диапазона, °C |
| 5. Передача/прием по       | Назначение сетевой переменной – значение темпера-     |
| сети/Не используется       | туры берется из сети Ethernet или передается в сеть   |

## 10.2.1.1 Пункт меню «Тип датчика»

Пункт меню «Тип датчика» служит для задания типа датчика температуры из следующего списка:

DS18B20 – цифровой преобразователь температуры DS18B20;

DS18S20 – цифровой преобразователь температуры DS18S20;

а также термопреобразователи сопротивления:

NTC 20k – с характеристикой NTC 20k;

NTC 12k-A – с характеристикой NTC 12k-A;

NTC 10k-A – с характеристикой NTC 10k-A;

NTC 10k-B – с характеристикой NTC 10k-B;

NTC 1.8k – с характеристикой NTC 1.8k-В;

Ni1000 (6170) - никелевый с характеристикой Ni1000 (6170);

Ni1000 (5000) - никелевый с характеристикой Ni1000 (5000);

500П (1,3910) – платиновый с характеристикой 500П (1,3910);

Pt500 (1,3850) – платиновый с характеристикой Pt500 (1,3850);

1000П (1,3910) – платиновый с характеристикой 1000П (1,3910);

Pt1000 (1,3850) – платиновый с характеристикой Pt1000 (1,3850);

Дискр. вход DIN — подключение любого датчика с выходом «сухой контакт» (дискретный вход). При выборе этого типа коррекция, минимальное и максимальное допустимые значения не используются.

| Тип датчика |                 |
|-------------|-----------------|
|             | $\bigoplus^{*}$ |
| Pt1000 (1,  | 3850)           |
| ↓ He coxp.  | Coxp.           |

Пользователь выбирает тип датчика температуры, подключенного к заданному входу.

Выбор типа датчика осуществляется кнопками «个», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

#### 10.2.1.2 Пункт меню «Коррекция»

Пункт меню «Коррекция» служит для задания величины коррекции выходного сигнала датчика температуры. Величина коррекции суммируется с выходными показаниями датчиков температуры.

| Коррекция  |                 |
|------------|-----------------|
|            | $\bigoplus^{+}$ |
| 0.0        | )               |
| ✓ He coxp. | Coxp.           |

Пользователь вводит значение коррекции в °C. Величина коррекции может быть, как положительной, так и отрицательной.

Увеличение/уменьшение значения осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

## 10.2.1.3 Пункт меню «MIN допустимое значение»

Пункт меню «MIN допустимое значение» служит для задания минимальной величины из рабочего диапазона датчика температуры в °C. В случае выхода измеренного значения датчика ниже этого значения, формируется сообщение о неисправности датчика (авария).

| MIN значение |                 |
|--------------|-----------------|
|              | $\bigoplus^{+}$ |
| -70          |                 |
| ↓ He coxp.   | Coxp. 〉         |

Пользователь вводит значение минимальной величины рабочего диапазона датчика температуры в °C.

Увеличение/уменьшение значения осуществляется кнопками «个», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

## 10.2.1.4 Пункт меню «МАХ допустимое значение»

Пункт меню «МАХ допустимое значение» служит для задания максимальной величины рабочего диапазона датчика температуры в °С. В случае выхода измеренного значения датчика выше этого значения, формируется сообщение о неисправности датчика (авария).

| МАХ значени | 1e              |
|-------------|-----------------|
|             | $\bigoplus^{+}$ |
| 20          | 0               |
| ↓ He coxp.  | Coxp.           |

Пользователь вводит значение максимальной величины рабочего диапазона датчика температуры в °C.

Увеличение/уменьшение значения осуществляется кнопками «个», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

## 10.2.1.5 Пункт меню «Передача/Прием по сети»

Пункт меню «Передача/Прием по сети» служит для задания режима использования датчика температуры в качестве сетевой переменной. Если несколько контроллеров соединены по сети Ethernet, то возможно получение значения температуры от другого контроллера или передачи значения т.е. не подключать датчик к данному контроллеру, а использовать сетевую переменную другого контроллера.



Пользователь выбирает режим использования датчика температуры.

Выбор режима датчика осуществляется кнопками «个», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

Пользователь может выполнить следующие действия.

| Tabanna 25 - | Пойстона пользора | 2000 0 MOULO 2000   |                      | Jamuuna  |
|--------------|-------------------|---------------------|----------------------|----------|
| 1001040 55 - | деиствия полозови | пеля в меню забания | режими использовиния | ойттчики |

| Пункт меню       | Описание                                                                                                                                                    |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Передача      | Значение температуры датчика данного контроллера ис-<br>пользуется как сетевая переменная другим контроллером.                                              |
| 2. Прием по сети | Данный контроллер использует значение сетевой темпера-<br>туры датчика, подключенного к другому контроллеру и<br>настроенному на передачу значений по сети. |
| Не используется  | Данный контроллер не передает и не получает значение температуры по сети, т.е. не используются сетевая перемен-<br>ная.                                     |

Примечание -

- 1. Использование одного датчика для нескольких контроллеров позволяет сократить их количество. Например, датчик наружного воздуха Тнв может использоваться для нескольких контроллеров.
- 2. Контроллеры в этом случае должны иметь различные IP адреса.

## 10.2.2 Пункт меню «AI1 – AI2»

Пункт меню «AI1 – AI2» служит для настройки аналоговых входов контроллера, используемых, как правило, для подключения датчика давления.



Просмотр пунктов меню осуществляется кнопками «↑», «↓», выбор для изменения параметра – нажать «→».

Пользователь может выполнить следующие действия.

Таблица 36 – Действия пользователя в меню настройки датчика

| Пункт меню                 | Описание                                                           |
|----------------------------|--------------------------------------------------------------------|
| 1. Тип датчика             | Выбор вида интерфейса датчика                                      |
| 2. Коррекция               | Ввод значения величины коррекции давления                          |
| 3. Начальная точка         | Ввод значения физической величины, соответствующей начальной точке |
| 4. Конечная точка          | Ввод значения физической величины, соответствующей конечной точке  |
| 5. MIN допустимое значение | Ввод минимального значения из рабочего диапазона                   |
| 6. МАХ допустимое значение | Ввод максимального значения из рабочего диапазона                  |

#### 10.2.2.1 Пункт меню «Тип датчика»

Пункт меню «Тип датчика» служит для задания вида интерфейса датчика давления из следующего списка:

| <b>T C D T</b>                   | <b>_</b> _ |                | <b>`</b>         | <b>`</b>      | , .     | <b>`</b>  |
|----------------------------------|------------|----------------|------------------|---------------|---------|-----------|
| $1 \alpha h \alpha m \alpha + 1$ | <u> </u>   | пользоратрла и | 2 MOUIO 20000110 | i olida ilumi | onmoura | damuuva   |
| ruonuuu J7                       | -дсиствия  |                | 2 MCAN SUUUAUA   | 0000 0000     | EDWEULU | UUIIIMUNU |
|                                  |            |                |                  |               |         |           |

| Пункт меню | Описание                                                              |
|------------|-----------------------------------------------------------------------|
| 4-20 мА    | – подключение датчика с интерфейсом «токовая петля» (4 - 20) мА       |
| 0-20 мА    | – подключение датчика с интерфейсом «токовая петля» (0 - 20) мА       |
| 0-10 B     | – подключение датчика с интерфейсом постоянного напряжения (0 - 10) В |

Пользователь выбирает вид интерфейса датчика давления, подключенного к входу Al1 или Al2.

| Тип датчика |                 |
|-------------|-----------------|
|             | $\bigoplus^{t}$ |
| 4-20        | MA              |
| ↓ He coxp.  | Coxp. 〉         |

Выбор типа датчика осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

Внимание! Для работы датчика с интерфейсом (0-20) мА или (4-20) мА параллельно входу АІ 1 или АІ2 должен быть подсоединен шунтирующий резистор 220 Ом ±0,1% 0,25Вт.

## 10.2.2.2 Пункт меню «Коррекция»

Пункт меню «Коррекция» служит для задания величины коррекции выходного сигнала аналогового датчика давления. Величина коррекции суммируется с выходными показаниями датчиков давления.

| Коррекция |                 |
|-----------|-----------------|
|           | $\bigoplus^{+}$ |
| 0.0       | )               |
| He coxp.  | Coxp.           |

Пользователь вводит значение коррекции в физической величине (бар, атмосферы, кгс/м<sup>2</sup>). Величина коррекции может быть, как положительной, так и отрицательной.

Увеличение/уменьшение значения осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

## 10.2.2.3 Пункт меню «Начальная точка»

Пункт меню «Начальная точка» служит для задания физической величины, соответствующей начальной точке выходной характеристики датчика. Например, 4 мА соответствуют 0 бар, значит надо ввести 0. Физической величиной может быть давление в барах, атмосферах, кгс/м<sup>2</sup> и проч.

| Начальная т | очка                |
|-------------|---------------------|
|             | $\bigoplus_{-}^{+}$ |
| 0.          | .0                  |
| ↓ He coxp.  | Coxp. 〉             |

Пользователь вводит значение физической величины (бар, атмосферы, кгс/м<sup>2</sup>), соответствующей начальной точке выходной характеристики датчика.

Увеличение/уменьшение значения осуществляется кнопками «个», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

## 10.2.2.4 Пункт меню «Конечная точка»

Пункт меню «Конечная точка» служит для задания физической величины, соответствующей конечной точке выходной характеристики датчика. Например, 20 мА соответствуют 10 бар, значит надо ввести 10. Физической величиной может быть давление в барах, атмосферах, кгс/м<sup>2</sup> и проч.

| Конечная то | очка         |
|-------------|--------------|
|             | $^{\dagger}$ |
| 10          | 0.0          |
| 🗸 He coxp.  | Coxp. 〉      |

Пользователь вводит значение физической величины (бар, атмосферы, кгс/м<sup>2</sup>), соответствующей конечной точке выходной характеристики датчика.

Увеличение/уменьшение значения осуществляется кнопками «个», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

## 10.2.2.5 Пункт меню «MIN допустимое значение»

Пункты меню «MIN допустимое значение» аналогичны приведённым выше (настройка входов T1-T5).

#### 10.2.2.6 Пункт меню «МІN допустимое значение»

Пункты меню «МАХ допустимое значение» аналогичны приведённым выше (настройка входов T1-T5).

## 10.3 Пункт меню «Настройка Ethernet»

Пункт меню «Hacтройка Ethernet» позволяет задать сетевые параметры контроллера для работы в локальной сети Ethernet.



Просмотр списка осуществляется кнопками « $\uparrow$ », « $\downarrow$ », выбор для изменения параметра – нажать « $\rightarrow$ ».

**Внимание!** После изменения настроек Ethernet необходимо перезагрузить контроллер, отключив на несколько секунд питание контроллера (дисплей должен погаснуть).

Пользователь может выполнить следующие действия.

Таблица 38 – Действия пользователя в меню «Настройка Ethernet»

| Пункт меню               | Описание                                                                              |
|--------------------------|---------------------------------------------------------------------------------------|
| 1. Получить IP автомати- | Включение процедуры автоматического назначения сете-                                  |
| чески                    | вых настроек                                                                          |
| 2. ІР адрес              | Задание адреса прибора в пределах локальной сети                                      |
| 3. Маска подсети         | Задание битовой маски для определения диапазона адре-<br>сов, входящих в свою подсеть |
| 4. Основной шлюз         | Задание адреса основного шлюза в локальной сети                                       |
| 5. DNS сервер            | Задание адреса сервера DNS для работы с доменными име-<br>нами                        |

## 10.3.1 Пункт меню «Получить IP автоматически»

Пункт меню «Получить IP автоматически» служит для включения процедуры автоматического назначения регулятору сетевого IP адреса и сетевых настроек Ethernet. В этом случае используется встроенная служба выдачи адресов (DHCP-сервер) на маршрутизаторе локальной сети.

| <b>IP</b> автоматич | ески         |
|---------------------|--------------|
|                     | $^{\dagger}$ |
| ДА                  |              |
|                     | Coxp.        |

Пользователь выбирает «ДА» для использования DHCP-сервера, и «НЕТ» - в случае назначения IP адреса прибора вручную.

Изменение состояния осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

## 10.3.2 Пункт меню «IP адрес»

Пункт меню «IP адрес» служит для задания уникального сетевого адреса контроллера в Ethernet, состоящего из 4 байт.

| IP адрес   |       |                       |
|------------|-------|-----------------------|
|            |       | $\bigoplus_{i=1}^{+}$ |
| 192:168:   | 1:236 |                       |
| ↓ He coxp. |       | Coxp. 〉               |

Пользователь задает сетевой адрес в виде четырёх десятичных чисел значением от 0 до 255, разделённых точками.

Переход по полям адреса осуществляется кнопками « $\rightarrow$ », « $\leftarrow$ », увеличение/уменьшение значения кнопками « $\uparrow$ », « $\downarrow$ », ввод параметра – нажать « $\rightarrow$ » в крайнем правом положении «Coxp.», выход без сохранения – нажать « $\leftarrow$ » в крайнем левом положении «Не сохр.».

## 10.3.3 Пункт меню «Маска подсети»

Пункт меню «Маска подсети» служит для задания битовой маски для определения диапазона адресов, входящих в свою подсеть, состоящей из 4 байт.

| Маска подсети                  |                 |
|--------------------------------|-----------------|
|                                | $\bigoplus^{+}$ |
| 000:255:255: <mark>25</mark> ! | 5               |
| He coxp.                       | Coxp.           |

Пользователь задает маску подсети в виде четырёх десятичных чисел значением от 0 до 255, разделённых точками.

Переход по полям адреса осуществляется кнопками « $\rightarrow$ », « $\leftarrow$ », увеличение/уменьшение значения кнопками « $\uparrow$ », « $\downarrow$ », ввод параметра – нажать « $\rightarrow$ » в крайнем правом положении «Coxp.», выход без сохранения – нажать « $\leftarrow$ » в крайнем левом положении «Не сохр.».

## 10.3.4 Пункт меню «Основной шлюз»

Пункт меню «Основной шлюз» служит для задания сетевого адреса основного шлюза в сети Ethernet, состоящего из 4 байт.

| Основной шлюз |                 |
|---------------|-----------------|
|               | $\bigoplus^{+}$ |
| 255:255:25    | 5:000           |
| ↓ He coxp.    | Coxp.           |

Пользователь задает адрес основного шлюза в виде четырёх десятичных чисел значением от 0 до 255, разделённых точками.

Переход по полям адреса осуществляется кнопками « $\rightarrow$ », « $\leftarrow$ », увеличение/уменьшение значения кнопками « $\uparrow$ », « $\downarrow$ », ввод параметра – нажать « $\rightarrow$ » в крайнем правом положении «Coxp.», выход без сохранения – нажать « $\leftarrow$ » в крайнем левом положении «Не сохр.».

## 10.3.5 Пункт меню «DNS сервер»

Пункт меню «DNS сервер» служит для задания сетевого адреса сервера DNS (Domain Name System) для работы с доменными именами в сети Ethernet, состоящего из 4 байт.

| DNS сервер |                  |
|------------|------------------|
|            | ${\bigcirc}^{+}$ |
| 192:168:   | 1:1              |
| He coxp.   | Coxp. 〉          |

Пользователь задает адрес в виде четырёх десятичных чисел значением от 0 до 255, разделённых точками.

Переход по полям адреса осуществляется кнопками « $\rightarrow$ », « $\leftarrow$ », увеличение/уменьшение значения кнопками « $\uparrow$ », « $\downarrow$ », ввод параметра – нажать « $\rightarrow$ » в крайнем правом положении «Coxp.», выход без сохранения – нажать « $\leftarrow$ » в крайнем левом положении «Не сохр.».

# 10.4 Пункт меню «Настройка Modbus»

Пункт меню «Hactpoйкa Modbus» позволяет задать параметры контроллера для работы в интерфейсе RS-485 по протоколу Modbus RTU.

| Modbus                            | $\Leftrightarrow$ |
|-----------------------------------|-------------------|
| 1. Адрес Modbus                   |                   |
| 2. Скорость порта RS485<br>115200 |                   |

Просмотр пунктов меню осуществляется кнопками «↑», «↓», выбор для изменения параметра – нажать «→».

Пользователь может выполнить следующие действия:

| Таблица 39 – Действия пол | ьзователя в меню | «Настройка | Modbus» |
|---------------------------|------------------|------------|---------|
|                           |                  |            |         |

| Пункт меню              | Описание                                                      |
|-------------------------|---------------------------------------------------------------|
| 1. Aдрес Modbus         | Задание уникального адреса в интерфейсе Modbus                |
| 2. Скорость порта RS485 | Задание скорости передачи данных бит/с в интерфейсе<br>Modbus |

## 10.4.1 Пункт меню «Адрес Modbus»

| Адрес Modbu | S            |
|-------------|--------------|
|             | $^{\dagger}$ |
| 31          |              |
| ↓ He coxp.  | Coxp.        |

Пункт меню «Adpec Modbus» служит для задания уникального аdpeca контроллера в интерфейсе Modbus (RS-485).

Пользователь вводит адрес контроллера в интерфейсе Modbus.

Увеличение/уменьшение значения осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

## 10.4.2 Пункт меню «Скорость RS485»

Пункт меню «Скорость RS485» служит для задания скорости обмена по интерфейсу RS-485.

| Скорость RS485 |                                            |  |
|----------------|--------------------------------------------|--|
|                | ${ } { } = { } { } { } { } { } { } { } { $ |  |
| 115200         |                                            |  |
|                |                                            |  |
| ↓ He coxp.     | Coxp. 〉                                    |  |

Скорость передачи данных в интерфейсе выбирается из ряда: 115200, 57600, 38400, 19200, 9600 бит/с. Увеличение/уменьшение значения осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

# 10.5 Пункт меню «Обновление ПО»

Пункт меню «Обновление ПО» служит для удаленного обновления версии встроенного программного обеспечения (ПО) контролера по сети Интернет по интерфейсу Ethernet. После обновления ПО контроллер восстанавливает режимы работы и значения настроечных параметров, имеющихся в нем до обновления, а также журнал событий.

Для начала обновления контроллер должен быть подключен к сети Интернет и должны быть верно настроены сетевые параметры.

Новые версии ПО контроллера хранятся на сервере обновлений МНПП «Сатурн» в сети Интернет. Обновление встроенного ПО контроллера производится на последнюю версию.

|   | Есть новая версия<br>Загрузить обновл<br>∮Нет | а ПО.<br>ения?<br>Да 🕽 |  |
|---|-----------------------------------------------|------------------------|--|
| , |                                               |                        |  |

Если на сервере обновлений имеется новая версия ПО контроллера, то, после подтверждения действия пользователем «Да→», произойдет автоматическая запись программы в память контроллера. Это займет несколько секунд. Выход – нажать «←».

| Обновление ПО |       |     |
|---------------|-------|-----|
| Очистка г     | амяти | 35% |
|               |       |     |
| < Выход       |       |     |

| Обновление ПО |     |  |
|---------------|-----|--|
| Загрузка      | 35% |  |
| < Отмена      |     |  |

После завершения процедуры обновления контроллер автоматически перезагрузиться.

Номер версии встроенного ПО контроллера отображается в меню «Об устройстве».

Если в контроллер записана самая новая версия ПО, то выводиться сообщение с указанием номера версии ПО.

| Обновление ПО                     |  |
|-----------------------------------|--|
| У Вас последняя версия ПО:<br>3.1 |  |
| Выход                             |  |

Если в момент обновления ПО отсутствует соединение с сетью Интернет, то выводится сообщение об ошибке.

# Обновление ПО

Запрос обновления... Ошибка: Проблема с соединением

< Выход

Перечень ошибок сети Ethernet:

- «Недостаточно памяти»;
- «Ошибка буфера»;
- «Таймаут»;
- «Проблема с соединением»;
- «Операция выполняется»;
- «Некорректное значение»;
- «Операция заблокирована»;
- «Адрес уже используется»;
- «Уже подключаетесь»;
- «Уже подключены»;
- «Нет соединения»;
- «Низкоуровневая ошибка»;
- «В соединении отказано»;
- «Соединение сброшено»;
- «Соединение закрыто»;
- «Некорректный аргумент»;
- «Неизвестная ошибка».

В этом случае необходимо проверить подключение кабеля к коммутатору сети Ethernet, уточнить сетевые настройки у администратора поставщика услуг Интернет.

# 10.6 Пункт меню «Смена ПО»

Пункт меню «Смена ПО» служит для удаленной смены типа встроенного программного обеспечения (ПО) контроллера по сети Интернет по интерфейсу Ethernet.

Пользователь может выбрать одну из следующих систем:

- электронной регулятор температуры систем отопления, ГВС, вентиляции;

- программируемый логический контроллер (PLC) с программированием на языке Function Block Diagram (FBD);

- программируемый логический контроллер (PLC) с программированием на языке С-Script;

- насосная станция.

Контроллер долен быть подключен к сети Интернет и должны быть верно настроены сетевые параметры. Все версии ПО хранятся на сервере обновлений разработчика МНПП «Сатурн» в сети Интернет.

| Список ПО                                                                                                                                                       | $  \Leftrightarrow$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| РLС контроллер (FBD)<br>Версия: 2.1<br>Отопление, ГВС, Вентиляция<br>Версия: 3.5<br>Насосная станция<br>Версия: 3.2<br>PLC контроллер (C-Script)<br>Версия: 1.6 |                     |

Пользователь выбирает тип ПО в зависимости от области применения контроллера.

Выбор типа ПО контроллера осуществляется кнопками « $\uparrow$ », « $\downarrow$ », ввод – нажать « $\rightarrow$ », выход – нажать « $\leftarrow$ ».

При выборе нового ПО необходимо подтвердить смену программы: «Да» - перейти к загрузке ПО, «Нет» - отмена.

| Пункт меню                   | Описание                                                                                                                                                                                                                  |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PLC контроллер (FBD)         | Контроллер работает в режиме программируемого логического контроллера (PLC) с программированием на языке FBD, пользователь должен написать и загрузить встроенную управляющую программу в контроллер                      |
| Отопление, ГВС и Ввентиляция | Контроллер работает в режиме электронного регуля-<br>тора температуры систем отопления, ГВС и вентиля-<br>ции                                                                                                             |
| Насосная станция             | Контроллер работает в режиме управления насосной станцией                                                                                                                                                                 |
| PLC контроллер (C-Script)    | Контроллер работает в режиме программируемого<br>логического контроллера (PLC) с программированием<br>на языке C-Script, пользователь должен написать и за-<br>грузить встроенную управляющую программу в кон-<br>троллер |

Таблица 40 – Список программного обеспечения

| Загрузить ПО<br>Отопление, ГВС<br>Версия: 3.2 | , Вентиляция |
|-----------------------------------------------|--------------|
| < Нет                                         | Да 🕽         |

Начнется процесс загрузки нового ПО контроллера с сервера разработчика МНПП «Сатурн» по сети Ethernet. Загрузка ПО происходит в автоматическом режиме. Вначале будет очищена память контроллера и будет загружено новое ПО.

| Загрузка ПО        | Загрузка ПО        |     |
|--------------------|--------------------|-----|
| Очистка памяти 35% | Загрузка<br>Отмена | 35% |

В конце произойдет перезагрузка контроллера, выполнится обновление ПО и запустится режим работы в соответствии с загруженным ПО.



Если отсутствует соединение с сетью Интернет, то выводится сообщение об ошибке.

| Загрузка ПО            |      |
|------------------------|------|
|                        |      |
|                        |      |
|                        |      |
|                        | 100% |
| Очистка памяти         | 100% |
|                        |      |
| Ошибка:                |      |
| Проблема с соединением |      |
| Выхол                  |      |
| Лориход                |      |

Перечень ошибок сети Ethernet приведен выше (см. Обновление ПО).

В этом случае необходимо проверить подключение кабеля к коммутатору сети Ethernet, уточнить сетевые настройки у администратора поставщика услуг Интернет.

Номер версии встроенного ПО контроллера отображается в меню «Об устройстве».

## 10.7 Пункт меню «Клавиатура и экран»

Пункт меню «Клавиатура и экран» служит для настройки режима работы клавиатуры и дисплея контроллера.



Просмотр пунктов меню осуществляется кнопками «↑», «↓», выбор пункта – нажать «→», выход – нажать «←».

Пользователь может выполнить следующие действия.

| Пункт меню                      | Описание                                                                                                |
|---------------------------------|---------------------------------------------------------------------------------------------------------|
| 1. Пароль на вход в меню        | Разрешить использование пароля на измерение парамет-<br>ров вручную                                     |
| 2. Яркость экрана               | Установка яркости дисплея (подсветка)                                                                   |
| 3. Снижать яркость<br>экрана    | Разрешить автоматическое снижение яркости дисплея при отсутствии нажатий на кнопки в течение пяти минут |
| 4. Звук при нажатии кла-<br>виш | Включение звукового сигнала при нажатии клавиш управле-<br>ния контроллера                              |

Таблица 41 – Действия пользователя в меню экрана и клавиатуры

## 10.7.1 Пункт меню «Пароль на вход в меню»

Пункт меню «Пароль на вход в меню» служит для включения режима защиты настроечных параметров регулятора от неквалифицированного воздействия. Контроллер поставляется потребителю со снятым паролем.

| Пароль на вх | од           |
|--------------|--------------|
|              | $^{\dagger}$ |
| HET          |              |
| 🗸 He coxp.   | Coxp. 〉      |

Пользователь выбирает «ДА» для использования пароля, и «НЕТ» - при отсутствии пароля.

Изменение состояния осуществляется кнопками «↑», «↓», ввод – нажать «→», выход без сохранения – нажать «←».

Все контроллеры используют единый пароль, пользователь не имеет возможности его изменить. Пароль для доступа к настройкам контроллера: нажать 1 раз кнопку «↓», 2 раза «↑», 3 раза «↓», 4 раза «↑».

## 10.7.2 Пункт меню «Яркость экрана»

Пункт меню «Яркость экрана» служит для установки уровня яркости дисплея прибора. Яркость задается в относительных единицах. 100% соответствует максимальной яркости, 1% - минимальной.

Примечание – Если на кнопки контроллера не было нажатий в течение пяти минут, и установлен признак «Снижать яркость экрана», то контроллер автоматический понижает яркость дисплея.

| Яркость экран | a              |
|---------------|----------------|
|               | $\bigcirc^{+}$ |
| 55 %          |                |
| ↓ He coxp.    | Coxp. 〉        |

Увеличение/уменьшение значения яркости осуществляется кнопками «↑», «↓», ввод параметра – нажать «→», выход без сохранения – нажать «←».

## 10.7.3 Пункт меню «Снижать яркость экрана»

Пункт меню «Снижать яркость экрана» служит для автоматического снижения уровня яркости дисплея прибора, если на кнопки контроллера не было нажатий в течение пяти минут.

| Снижать ярко | ость           |
|--------------|----------------|
|              | $\bigcirc^{+}$ |
| ДА           |                |
| ↓ He coxp.   | Coxp. 〉        |

Пользователь выбирает «ДА» для автоматического снижения яркости, и «НЕТ» - для постоянного уровня яркости.

Изменение состояния осуществляется кнопками «↑», «↓», ввод – нажать «→», выход без сохранения – нажать «←».

## 10.7.4 Пункт меню «Звук при нажатии»

Пункт меню «Звук при нажатии» служит для включение звукового сигнала при нажатии кнопок управления на корпусе прибора.

| Звук при нажат | ии              |
|----------------|-----------------|
|                | $\bigoplus^{+}$ |
| ЛА             |                 |
|                |                 |
| ✓ He coxp.     | Coxp. 〉         |

Пользователь выбирает «ДА» для включения звука, и «НЕТ» - для выключения звука.

Изменение состояния осуществляется кнопками « $\uparrow$ », « $\downarrow$ », ввод – нажать « $\rightarrow$ », выход без сохранения – нажать « $\leftarrow$ ».

# 10.8 Пункт меню «Об устройстве»

Пункт меню «Об устройстве» служит для просмотра общих сведений о контроллере:

- наименовании разработчика и веб-сайта в сети Интернет;

- заводского (серийного) номера контроллера;
- наименования встроенного ПО контроллера;

- номера версии встроенного ПО контроллера.

# Об устройстве Разработчик: МНПП Сатурн Сайт: www.sat500.ru Сер. номер: 1801001 ПО: Отопление, ГВС, Вентиляция Версия ПО: 3.1

Для выхода нажать «←».

# 11 Порядок работы

После подачи напряжения питания на контроллер, работающий в режиме «Отопление, ГВС, вентиляция», происходит его инициализация и на индикатор выводится мнемосхема режима регулирования.

При включении питания контроллер переходит в режим работы, выбранный при предыдущей загрузке встроенного ПО контроллера.

# 11.1 Основной экран

На основном экране дисплея контроллера в виде условных значков отображаются датчики, насосы, регулирующие клапаны и режимы их работы для 1 и 2 каналов регулирования (рисунок 24).



Рисунок 24 – Основной экран контроллера

Дисплей условно разделен на три поля. В поле слева расположены индикаторы температуры: Тнв наружного воздуха – вверху, Ттсо – теплосети обратная, Ттсп – подачи теплосети. Контроллер имеет два независимых регулятора – каналы 1 и 2. В поле справа вверху расположены элементы канала 1. В поле справа внизу расположены элементы канала 2. Типы отображаемых значков зависят от режима работы канала. Формы экрана приведены в соответствующих разделах настоящего РЭ.

Информационный обмен по подключенным интерфейсам отображается в виде значков в поле слева:

| Изображение | Описание                                         |
|-------------|--------------------------------------------------|
|             | - прием и передача данных по интерфейсу Ethernet |
| ŧ           | - прием и передача данных по интерфейсу USB      |
| RS<br>485   | - прием и передача данных по интерфейсу RS-485   |

Таблица 42 – Условные значки активности интерфейсов



- удаленное управление работой контроллера по сети Ethernet, например, отключение насосов и проч.

# 11.2 Просмотр состояния интерфейсов, входных и выходных сигналов

Пользователь имеет возможность просмотра текущего состояния сетевых интерфейсов, входных и выходных сигналов контроллера: датчиков и исполнительных механизмов. Для просмотра состояния сигналов, состояния сетевого подключения следует нажать кнопки «↑», «↓», переход в меню прибора – нажать «→».

Экран состояния контроллера примет следующий вид.

| Время:                                              | ЧΤ                                     | 19.09.17                                                                                  | 17:15:16         |  |
|-----------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------|------------------|--|
| MAC:<br>IP:<br>Маска:<br>Шлюз:<br>DNS:<br>IP автома | 00<br>19<br>21<br>19<br>19<br>19<br>19 | 0:80:E1:A3:<br>92.168.1.23<br>55.255.255<br>92.168.1.1<br>92.168.1.1<br>ски: Нет<br>100Ва | 40:11<br>5<br>.0 |  |
| Modbus a                                            | дрес                                   | : 48 (3                                                                                   | 0h)              |  |
| Скорость<br>Батарейк                                | RS48<br>a:                             | 5: 1152(<br>Ок                                                                            | 00               |  |

Параметры сетевого интерфейса Ethernet и RS-485 контроллера.

| Пункт            | Описание                                                               |
|------------------|------------------------------------------------------------------------|
| Время            | - текущие день, дата, время встроенных часов контроллера               |
| MAC              | - уникальный идентификатор контроллера (МАС адрес)                     |
| IP               | - адрес контроллера в пределах локальной сети (IP адрес)               |
| Маска            | - маска подсети                                                        |
| Шлюз             | - IP-адрес основного шлюза в локальной сети                            |
| DNS              | - IP-адрес сервера DNS (Domain name system)                            |
| IP автоматически | - автоматическое назначение контроллеру сетевого IP-адреса<br>(Да/Нет) |
| Link             | - состояние подключения к локальной сети:                              |
|                  | FullDuplex_100BaseT – подключена сеть 100 МБ/с,                        |
|                  | FullDuplex_10BaseT – подключена сеть 10 МБ/с,                          |
|                  | Кабель не подключен – сеть не подключена                               |
| Modbus адрес     | - уникальный адрес в интерфейсе Modbus                                 |
| Скорость RS485   | - скорость передачи данных по интерфейсу RS-485                        |
| Батарейка        | - состояние встроенного элемента питания CR2032:                       |
|                  | Ok – напряжение элемента питания в норме.                              |

Таблица 43 — Просмотр состояния интерфейсов Ethernet, RS-485 и батареи

# 11.3 Просмотр состояния входных и выходных сигналов

На следующем экране отображаются состояние десяти дискретных входов DIx контроллера. Назначение сигналов DI 1-10 зависит от выбранной схемы регулирования.

| -                                                         |                                                                                                                                      |  |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| Dlx                                                       | Назначение                                                                                                                           |  |
| 1.<br>2.<br>3.<br>4.<br>5.<br>6.<br>7.<br>8.<br>9.<br>10. | СО1 В⊥насоса<br>ГВС2 В⊥насоса<br>СО1 Разрешен Н1<br>СО1 Разрешен Н2<br>ГВС1 Разрешен Н1<br>ГВС2 Разрешен Н2<br>СО1 Пуск<br>ГВС2 Пуск |  |

Таблица 44 – Просмотр состояния дискретных входов контроллера

| Пункт      | Описание                                                                                                    |
|------------|-------------------------------------------------------------------------------------------------------------|
| DIx        | - номер {x} дискретного входа (1-10);                                                                       |
| Назначение | <ul> <li>назначение дискретного входа в соответствии с режимом работы ка-<br/>нала 1 и канала 2;</li> </ul> |
|            | - состояние сигнала на входе (🔜 - цепь замкнута 🖾 - цепь разо-<br>мкнута).                                  |

На следующем экране отображаются состояние одиннадцати дискретных выходов DO 1-11 контроллера. Назначение сигналов DO 1-10 зависит от выбранной схемы регулирования.

| DOx                                                              | Назначение                                                                                                                                                                                                                                                                               |     |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1.<br>2.<br>3.<br>4.<br>5.<br>6.<br>7.<br>8.<br>9.<br>10.<br>11. | СО1 Откр. клапан<br>СО2 Закр. клапан<br>ГВС2 Откр. клапан<br>ГВС2 Откр. клапан<br>СО1 Вкл. насос 1<br>СО1 Вкл. насос 2<br>СО1 Вкл. насос 2<br>СО1 Вкл. насос 1<br>ГВС2 Вкл. насос 1<br>ГВС2 Вкл. насос 2<br>СО1 Вкл. насос 2<br>СО1 Вкл. насос 2<br>СО1 Вкл. насос 2<br>СО1 Вкл. насос 2 |     |
|                                                                  | Управлен                                                                                                                                                                                                                                                                                 | ие≬ |

| Таблица 45 — | Просмотр состоя | ния дискретных выход | ов контроллера |
|--------------|-----------------|----------------------|----------------|
| ,            | , ,             |                      | , ,            |

| Пункт      | Описание                                                                                                   |  |
|------------|------------------------------------------------------------------------------------------------------------|--|
| DOx        | - номер {x} дискретного выхода (1-11);                                                                     |  |
| Назначение | <ul> <li>назначение дискретного выхода в соответствии с режимом работы<br/>канала 1 и канала 2:</li> </ul> |  |
|            | СО – система отопления;                                                                                    |  |
|            | ГВС – система горячего водоснабжения;                                                                      |  |
|            | ВЕНТ — система вентиляции.                                                                                 |  |
|            | - состояние контактов реле выхода ( <del></del> - замкнуты ⊏ - разо-<br>мкнуты)                            |  |

| Управление | - переход в экран изменения состояния реле DO 1-11 вручную (тести- |
|------------|--------------------------------------------------------------------|
|            | рование исполнительных механизмов во время пуско-наладочных ра-    |
|            | бот).                                                              |

На следующем экране отображаются состояние входов T1 - T5 температурных датчиков контроллера и аналоговых входов AI 1-2. Вместо датчиков температуры могут быть подключены «сухие контакты». Назначение сигналов T1 - T5, AI 1-2 зависит от выбранной схемы регулирования.

| Tx         °C           1.         -13.21           2.         +56.17           3.         +65.45           4.         +70.22           5. | Назначение<br>Т уличная<br>Т обратка ТС<br>СО1 Т подачи<br>ГВС2 Т подачи |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| Alx bar                                                                                                                                    | Назначение                                                               |  |
| 6. 2.31<br>7                                                                                                                               | СО1 Р обратки                                                            |  |

Таблица 46 – Просмотр состояния температурных датчиков контроллера

| Пункт      | Описание                                                                       |  |
|------------|--------------------------------------------------------------------------------|--|
| Тх         | - номер {x} датчика температуры (1-5);                                         |  |
| Назначение | - назначение датчика в соответствии с режимом работы канала 1 и ка-<br>нала 2; |  |
| °C         | - текущее значение температуры в °С;                                           |  |
|            | - состояние сигнала на входе (🕶 - цепь замкнута 🖾 - цепь разо-<br>мкнута).     |  |
| Alx        | - номер {x} аналогового датчика давления (1-2);                                |  |
| bar        | - текущее значение давления в бар.                                             |  |

На следующем экране отображаются состояние аналоговых выходов АОх контроллера.

| AOx        | V            | Назначение                |             |
|------------|--------------|---------------------------|-------------|
| 1.<br>2.   | 0.00<br>0.00 | СО1 клапан<br>ГВС2 клапан |             |
| Бата       | рейка:       | 3.254 V                   |             |
| Alx        | V            | mA                        |             |
| 1.<br>2. ( | 0.009        | 20.032                    |             |
|            |              |                           | Управление₿ |

## Таблица 47 – Просмотр состояния аналоговых выходов контроллера

| Пункт      | Описание                                                                                                   |
|------------|------------------------------------------------------------------------------------------------------------|
| AOx        | - номер {x} аналогового выхода (1-2);                                                                      |
| Назначение | <ul> <li>назначение аналогового выхода в соответствии с режимом работы<br/>канала 1 и канала 2;</li> </ul> |
| V          | - напряжение на аналоговом выходе, В;                                                                      |
| Батарейка  | - напряжение встроенного элемента питания CR2032, В;                                                       |

| Alx        | - номер {x} аналогового входа (1-2);                                                                             |  |
|------------|------------------------------------------------------------------------------------------------------------------|--|
| v          | - напряжение на аналоговом входе, В (для проверки);                                                              |  |
| mA         | - ток на аналоговом входе, мА (для проверки), должен быть подклю-<br>чен внешний резистор 220 Ом ±0,1 %, 0,25Вт; |  |
| Управление | - переход в экран изменения значений напряжений АО1-АО2 вручную (тестирование исполнительных механизмов).        |  |

На следующих экранах отображается справка по условным обозначениям значков на мнемосхемах контроллера.

Далее, на следующем экране отображаются значения часов наработки насосов и вентилятора, в зависимости от установленной схемы регулирования.

| Наработка                            | час             |
|--------------------------------------|-----------------|
| ГВС2 Нц1 циркул.<br>ГВС2 Нц2 циркул. | 8271.5<br>158.9 |
|                                      | Изменение 👂     |

Пользователь может обнулить счетчик часов наработки нажав на кнопку «Изменение →». Откроется экран сброса счетчиков наработки оборудования (насосов, вентиляторов).

| Наработка                            | час             |
|--------------------------------------|-----------------|
| ГВС2 Нц1 циркул.<br>ГВС2 Нц2 циркул. | 8271.5<br>158.9 |
|                                      |                 |
| ∮ Выход                              | Сброс           |

Выбор счетчик часов наработки осуществляется кнопками «↑», «↓», сброс – нажать «→», выход без сброса – нажать «←».

Для сброса счетчика часов наработки следует нажать «→» на экране подтверждения действия пользователя.

| Сбросить счетчик<br>наработки? |     |  |
|--------------------------------|-----|--|
| < Нет                          | Да₿ |  |
|                                |     |  |

# 12 ОТОПЛЕНИЕ

# 12.1 Режим – Независимое отопление (1)

Мнемосхема «Независимое отопление (1)» показана на рисунке 25.



Рисунок 25 - Мнемосхема «Независимое отопление (1)»

Регулятор переходит в режим «Независимое отопление (1)» замыканием цепи сигнала «Пуск» (вход DI7, DI8), если предварительно был выбран этот режим.

Поддержание температуры Тп контура отопления относительно уставки, заданной по температурному графику относительно температуры наружного воздуха Тнв, происходит за счет изменения потока теплоносителя посредством открытия или закрытия регулировочного клапана Кр на заданную величину, пропорциональную управляющему воздействию.

Возможно дистанционно принудительно установить значение Тнв как константу вместо показаний датчика наружного воздуха, но на время не более 24 ч.

Регулятор содержит защиту от превышения температуры обратной сетевой воды Ттсо. Поддержание Ттсо производится по температурному графику. Также возможно ограничение температуры Ттсп подачи сетевой воды или поддержание температуры Тк внутри помещения.

Значение уставки температуры Тп контура отопления может быть задано отдельно как для рабочих и праздничных дней, так и для дня и ночи суток.

Регулятор измеряет давление в контуре отопления при помощи аналогового датчика давления Ро или реле сухого хода PS. Если давление ниже уставки включения подпитки, то регулятор открывает запорный клапан Кп и включает насос Нп контура подпитки. При достижении заданной уставки отключения подпитки по давлению, регулятор закрывает клапан и отключает насос контура подпитки.

## Аварии датчиков

Регулятор контролирует нахождение значений сигналов датчиков в допустимой рабочей области. Сообщение об аварии формируется в следующих случаях:

- значение температуры воздуха Тнв выходит за границы рабочего диапазона;

- значение температуры воды Тп выходит за границы рабочего диапазона;

- значение давления Ро выходит за границы рабочего диапазона;

- время работы насоса контура подпитки превысило заданное;

- обрыв, замыкание хотя бы одного датчика Тнв, Тп или Ро.

В случае вышеназванных аварий регулятор не формирует сигналы управления клапаном Кр, задвижка клапана остается в том положении, которое занимала до аварии, замыкаются контакты реле «Авария», но насосы Нц1, Нц2 и продолжают работать в соответствии с заданным графиком переключения.

Восстановление нормальной работы регулятора происходит автоматически после устранения причины аварии.

Контроллер регистрирует в памяти в журнале событий отказы (обрыв и замыкание линии связи) температурных преобразователей Тнв, Тп, Ттсо, датчика давления Ро.

#### Аварии насосов

Регулятор формирует сообщение об аварии циркуляционного насоса Hu1 или Hu2 при поступлении сигнала от датчика перепада давления dPнц с учетом времен задержки или датчика сухого хода, установленного на насосе. В этом случае регулятор отключает неисправный насос и включает другой насос, формирует сообщение об аварии, в том числе, срабатывает реле «Авария».

Также формируется сигнал об аварии в случае пропадание сигнала разрешения работы насоса «Автомат/Авария», если установлен для него режим аварийного сигнала.

В случае отказа насосов регулирование температуры в контуре отопления сохраняется.

Сигнал аварии насосов сохраняется до вмешательства оператора. Для его снятия необходимо кратковременно разомкнуть цепь «Автомат/Авария» или «Пуск».

В нормальном состоянии контакты реле «Авария» разомкнуты. В случае аварии регулятора эти контакты замыкаются.

Сигнал аварии насоса подпитки формируется в том случае, если контур подпитки непрерывно работает в течение времени более, чем заданное в настройках.

#### Индикация режима

Пример индикации режима «Независимая система отопления (1)» показан на рисунке 26.



Рисунок 26 - Пример индикации режима «Независимая система отопления (1)» Датчики температуры и давления отображаются в следующем виде.

| Изобра-<br>жение | Датчик | Описание                                                                                                                                                                          |  |  |
|------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ſ                | Тнв    | - значение температуры наружного воздуха (уличная), °С                                                                                                                            |  |  |
| ſ                | Ттсо   | значение температуры теплоносителя обратная, °С                                                                                                                                   |  |  |
| <b>₽</b> ₽       | Ттсп   | - значение температуры теплоносителя прямая, °С                                                                                                                                   |  |  |
| ſ                | Тп     | - значение температуры воды в системе отопления, °С                                                                                                                               |  |  |
| ¥°               | -      | - уставка температуры подачи воды в системе отопления, °С                                                                                                                         |  |  |
| ¥°               | _      | - уставка температуры наружного воздуха (уличная), °С, используется вместо датчика температуры наружного воздуха и задается дистанци-<br>онно, действует во времени не более 24 ч |  |  |
| xx bar           | Ро     | - значение давления воды в контуре отопления, бар.                                                                                                                                |  |  |

Таблица 48 – Отображение датчиков температуры на экране

Состояние регулятора системы отопления отображается в следующем виде.

| Таблица 49 – | Отображение | регулятора | системы | отопления | на экране |
|--------------|-------------|------------|---------|-----------|-----------|
|--------------|-------------|------------|---------|-----------|-----------|

| Изобра-<br>жение | Состояние                                                   | Описание                                                                                                                                                                                                                                                                                                                                                 |  |
|------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ١                | - регулятор системы<br>отопления включен,<br>норма          | Нормальная работа по поддержание температуры<br>Тп в системе отопления, все датчики и насосы ис-<br>правны                                                                                                                                                                                                                                               |  |
|                  | - авария регулятора си-<br>стемы отопления                  | Отказ датчиков или отказ насосов.<br>Замыкаются контакты реле «Авария».<br>Сигнал аварии насосов запоминается контролле-<br>ром и требует вмешательства оператора. Для его<br>снятия необходимо кратковременно вручную<br>снять сигнал «Автомат/Авария» или «Пуск».                                                                                      |  |
|                  | - регулятор системы<br>отопления остановлен<br>вручную      | Регулятор остановлен размыканием цепи сигнала<br>«Пуск».<br>В случае останова регулятор выключает насосы,<br>клапан блокируется и остается в том положении,<br>который предшествовал останову. Автоматическое<br>поддержание температуры Тп не производится.<br>Выход из останова осуществляется вручную замы-<br>канием контактов переключателя «Пуск». |  |
|                  | - регулятор системы<br>отопления остановлен<br>дистанционно | Регулятор остановлен дистанционно командой по<br>сети Ethernet из системы диспетчеризации.                                                                                                                                                                                                                                                               |  |

| Изобра-<br>жение | Состояние                                             | Описание                                                                                                     |
|------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
|                  | - летний режим регуля-<br>тора системы отопле-<br>ния | Регулятор остановлен и переведен в летний режим вручную (в сервисном меню): отключены насосы, клапан закрыт. |

Состояние насоса подпитки Нп и клапана Кп отображается в следующем виде.

| Таблица 50 – Отображение состояния насоса и кл | клапана подпитки на экране |
|------------------------------------------------|----------------------------|
|------------------------------------------------|----------------------------|

| Изобра-<br>жение | Состояние                                                                                                                                        | Описание                                                                                                                                                                                         |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •                | <ul> <li>насос подпитки включен</li> <li>и клапан подпитки открыт</li> <li>насос подпитки останов-</li> <li>лен и клапан подпитки за-</li> </ul> | <ul> <li>- включение насоса подпитки и клапана произ-<br/>водится одновременно по значению давления в<br/>системе отопления; клапан принимает два со-<br/>стояния – открыт или закрыт</li> </ul> |
| <b></b>          | крыт<br>- авария, насос подпитки<br>остановлен и клапан под-<br>питки закрыт                                                                     | - превышено заданное время работы насоса<br>подпитки, авария                                                                                                                                     |
| -O-X-            | - подпитка отключена<br>вручную                                                                                                                  | <ul> <li>насос подпитки остановлен отключен и клапан<br/>подпитки закрыт (отключен в сервисном меню)</li> </ul>                                                                                  |

Состояние циркуляционного насоса Нц отображается в следующем виде.

| Изобра-<br>жение                  | Состояние                                                                    | Описание                                                                                                      |  |  |
|-----------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|
| - насос отключен (номер насоса)   |                                                                              | - не разрешена работа насоса, цепь<br>входа «Автомат/Авария» разомкнута                                       |  |  |
| $\odot$                           | - насос включен (номер насоса)                                               | - разрешена работа насоса, цепь входа                                                                         |  |  |
| - насос остановлен (номер насоса) |                                                                              | редования работы насосов                                                                                      |  |  |
| 1                                 | - авария насоса (номер насоса),<br>сработал датчик перепада давле-<br>ния dP | - авария насоса определяется по сраба-<br>тыванию датчика перепада давления<br>«вход-выход», насос остановлен |  |  |
| 1                                 | - авария насоса (номер насоса),<br>сработал датчик сухого хода PS            | - авария насоса определяется по сраба-<br>тыванию датчика сухого хода на входе<br>насоса, насос остановлен    |  |  |

Состояние регулировочного клапана Кр отображается в следующем виде.

| Таблица 52 | ? – Отображение | состояния | регулировочно | го кла | пана на | экране |
|------------|-----------------|-----------|---------------|--------|---------|--------|
|            |                 |           |               |        |         |        |

| Изобра- | Состояние                 | Описание |
|---------|---------------------------|----------|
| жение   |                           |          |
| ×       | - клапан закрыт полностью |          |



# 12.2 Режим - Независимое отопление (2)

Мнемосхема «Независимое отопление (2)» показана на рисунке 27.



Рисунок 27 - Мнемосхема «Независимое отопление (2)»

Как видно из схемы, «Независимое отопление (2)» аналогичен «Независимое отопление (1)», но с одним отличием — в контуре отопления установлен только один циркуляционный насос Нц1, и, следовательно, не используется чередование работы насосов.



Пример индикации «Независимое отопление (2)» показан на рисунке 28.

Рисунок 28 - Пример индикации «Независимое отопление (2)»
## 12.3 Режим – Независимое отопление (3)

Мнемосхема «Независимое отопление (3)» показана на рисунке 29.



Рисунок 29 - Мнемосхема «Независимое отопление (3)»

Как видно из схемы, «Независимое отопление (3)» аналогичен «Независимое отопление (1)», но с одним отличием – отсутствует контур подпитки (клапан подпитки, насос подпитки, датчик давления).

В этом режиме возможно использование функции корректировки температуры подачи Тп в зависимости от комнатной температуры в помещении, где установлен дополнительный датчик температуры Тк. В этом случае ограничение по температуре Ттсп подачи теплосети невозможно.

Пример индикации режима «Независимое отопление (3)» с регулированием по комнатной температуре Тк показан на рисунке 30.



Рисунок 30 - Пример индикации режима «Независимое отопление (3)»

Датчик температуры в помещении Тк отображается в следующем виде:

Таблица 53 – Отображение датчика температуры в помещении на экране

| Изобра-<br>жение | Датчик | Описание                                                   |
|------------------|--------|------------------------------------------------------------|
|                  | Тк     | - значение температуры воздуха в помещении (комнатная), °С |
| ¥°               | -      | - уставка температуры воздуха в помещении (комнатная), °С  |

Если установлен режим ограничения по подаче Ттсп, то Тк не отображается, а в левой нижней части экрана отображается дополнительный термометр Ттсп (на рисунке это 95,9 °C), расположенный на экране выше Ттсо (на рисунке это 65,1 °C).



Рисунок 31 – Отображение режима ограничения по подаче

# 12.4 Режим - Независимое отопление (4)

Мнемосхема «Независимое отопление (4)» показана на рисунке 32.



Рисунок 32 - Мнемосхема «Независимое отопление (4)»

Как видно из схемы, режим «Независимое отопление (4)» аналогичен режиму «Независимое отопление (3)», но с одним отличием – в контуре отопления установлен только один циркуляционный насос Hц1, и, следовательно, не используется чередование работы насосов.

Пример индикации режима - «Независимое отопление (4)» показан на рисунке 33.





## 12.5 Режим - Независимое отопление (5)

Мнемосхема «Независимое отопление (5)» показана на рисунке 34.



Рисунок 34 - Мнемосхема «Независимое отопление (5)»

Как видно из схемы, «Независимое отопление (5)» аналогичен «Независимое отопление (1)», но с одним отличием – в контуре подпитки установлены два насоса Нц1 и Нц2, не используется чередование работы насосов подпитки: включается тот насос, у которого время наработки минимальное. Управление насосами и клапаном подпитки – раздельное.

Пример индикации «Независимое отопление (5)» показан на рисунке 35.



Рисунок 35 - Пример индикации «Независимое отопление (5)»

Состояние насоса подпитки Нп1 и Нп2 клапана Кп отображается в следующем виде:

Таблица 54 – Отображение состояния насоса и клапана подпитки на экране

| Изобра-<br>жение | Состояние                                                                     | Описание                                                                                                                                             |
|------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| *                | - насос подпитки Нп1 включен,<br>Нц2 выключен и клапан под-<br>питки открыт   | <ul> <li>включение насоса подпитки и клапана</li> <li>производится одновременно по значению</li> <li>давления в системе отопления; клапан</li> </ul> |
| *                | - насос подпитки Нп1 выклю-<br>чен, Нп2 включен и клапан под-<br>питки открыт | принимает два состояния — открыт или за-<br>крыт                                                                                                     |
| <b>*</b>         | - насосы подпитки Нп1, Нп2<br>остановлены и клапан под-<br>питки закрыт       |                                                                                                                                                      |

| * | - авария, насос подпитки Нп1<br>остановлен и клапан подпитки<br>закрыт, насос Нп2 выключен | - превышено заданное время работы<br>насоса подпитки Нп1, авария                  |
|---|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| * | - авария, насос подпитки Нп2<br>остановлен и клапан подпитки<br>закрыт, насос Нп1 выключен | - превышено заданное время работы<br>насоса подпитки Нп2, авария                  |
| * | - авария, насос подпитки Нп1<br>остановлен и клапан подпитки<br>закрыт, насос Нп2 включен  | - превышено заданное время работы<br>насоса подпитки Нп1, авария, работает<br>Нп2 |
| * | - авария, насос подпитки Нп2<br>остановлен и клапан подпитки<br>закрыт, насос Нп1 включен  | - превышено заданное время работы<br>насоса подпитки Нп2, авария, работает<br>Нп1 |
|   | - авария, насос подпитки Hn1,<br>Hn2 остановлены и клапан под-<br>питки закрыт             | - превышено заданное время работы насо-<br>сов подпитки Нп1 и Нп2, авария         |

Для схемы «Независимое отопление (5)» дополнительно отображается состояние контура подпитки. Для просмотра нажать на кнопку «↓» из основного экрана контроллера.



Рисунок 36 - Отображение контура подпитки

### Таблица 55 — Просмотр состояния контура подпитки

| Пункт                 | Описание                                                                                                                                                                                               |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Включений             | - количество включений насосов подпитки за сутки;                                                                                                                                                      |
| Время работы          | - суммарное время работы насосов подпитки за сутки, ч;                                                                                                                                                 |
| PS PS                 | - состояние датчика сухого хода насоса подпитки (норма – зеленый,<br>красный - авария);                                                                                                                |
| P                     | - текущее давление в обратной трубе отопления Ро, бар;                                                                                                                                                 |
| ¥°                    | - уставка давления в обратной трубе, бар (используется для включения подпитки);                                                                                                                        |
| Заполнение<br>системы | - при нажатии на кнопку «→» включается режим заполнения водой си-<br>стемы отопления, насосы подпитки включаются и будут отключены<br>при достижении заданного давления Ро в обратной трубе отопления. |

## 12.6 Режим – Зависимое отопление (1)

Мнемосхема «Зависимое отопление (1)» показана на рисунке 37.



Рисунок 37 - Мнемосхема «Зависимое отопление (1)»

Регулятор переходит в режим «Зависимое отопление (1)» при запуске работы замыканием цепи сигнала «Пуск», если предварительно был выбран этот режим.

Поддержание температуры Тп контура отопления относительно уставки, заданной по температурному графику относительно температуры наружного воздуха Тнв, происходит за счет изменения потока теплоносителя посредством открытия или закрытия регулировочного клапана Кр, пропорционально управляющему воздействию.

Возможно дистанционно принудительно установить значение Тнв как константу вместо показаний датчика наружного воздуха, но на время не более 24 ч.

Регулятор содержит защиту от превышения температуры обратной сетевой воды Ттсо. Поддержание Ттсо производится по температурному графику. Также возможен режим ограничения температуры Ттсп в подающей трубе теплосети, т.е. ограничение потребления тепла на данном объекте.

Значение уставки температуры Тп контура отопления может быть задано отдельно как для рабочих и праздничных дней, так и для дня и ночи суток.

Также регулятор может выполнять функцию корректировки температуры подачи Тп в зависимости от комнатной температуры в помещении, где установлен дополнительный датчик температуры Тк т.е. осуществлять поддержание комнатной температуры.

### Аварии датчиков

Контроллер проверяет нахождение значений сигналов датчиков в допустимой рабочей области. Сообщение об аварии формируется в следующих случаях:

- значение температуры воздуха Тнв выходит за границы рабочего диапазона;

- значение температуры воды Тп выходит за границы рабочего диапазона;
- значение давления Ро выходит за границы рабочего диапазона;
- время работы насоса контура подпитки превысило заданное;
- обрыв, замыкание хотя бы одного датчика Тнв, Тп или Ро.

В случае вышеназванных аварий регулятор не формирует сигналы управления клапаном Кр, задвижка клапана остается в том положении, которое занимала до аварии, замыкаются контакты реле «Авария», но насосы Нц1, Нц2 и продолжают работать в соответствии с заданным графиком переключения.

Восстановление нормальной работы регулятора происходит автоматически после устранения причины аварии.

Контроллер регистрирует в памяти в журнале событий отказы (обрыв и короткое замыкание) температурных преобразователей Тнв, Тп, Ттсо.

### Аварии насосов

Регулятор формирует сообщение об аварии циркуляционного насоса Hu1 или Hu2 при поступлении сигнала от датчика перепада давления dPнц с учетом времен задержки или датчика «сухого» хода. В этом случае регулятор отключает неисправный насос Hu и включает другой насос Hu, формирует сообщение об аварии, в том числе, сигнал реле «Авария».

Также формируется сигнал об аварии в случае пропадание сигнала «Автомат/Авария», если установлен для него режим аварийного сигнала.

В случае отказа насосов регулирование температуры в контуре отопления сохраняется.

Сигнал аварии насосов сохраняется до вмешательства оператора. Для снятия этих сигналов необходимо кратковременно разомкнуть цепь «Автомат/Авария» или «Пуск».

В нормальном состоянии контакты реле «Авария» разомкнуты. В случае аварии регулятора эти контакты замыкаются.

### Индикация режима

Пример индикации режима «Зависимое отопление (1)» с включенным режимом поддержания температуры Тк показан на рисунке ниже. В этом режиме регулирование по температуре прямой сетевой воды Ттсп не осуществляется.



Рисунок 38 - Пример индикации режима «Зависимое отопление (1)»

# 12.7 Режим – Зависимое отопление (2)

Мнемосхема режима «Зависимое отопление (2)» показана на рисунке 39.



Рисунок 39 - Мнемосхема режима «Зависимое отопление (2)»

Как видно из схемы, режим «Зависимое отопление (2)» аналогичен режиму «Зависимое отопление (1)», но с одним отличием – в контуре отопления установлен только один циркуляционный насос Hц1, и, следовательно, не используется чередование работы насосов.

Пример индикации режима «Зависимое отопление (2)» показан на рисунке ниже. Здесь показан режим ограничения по температуре прямой сетевой воды Ттсп. В этом режиме регулирование по комнатнйо температуре Тк не осуществляется.



Рисунок 40 - Пример индикации режима «Зависимое отопление (2)»

# 13 ГОРЯЧЕЕ ВОДОСНАБЖЕНИЕ

# 13.1 Режим – Горячее водоснабжение (1)

показана на рисунке 41.



Рисунок 41 - Мнемосхема режим «ГВС (1)»

Регулятор переходит в «ГВС (1)» при запуске работы замыканием цепи сигнала «Пуск», если предварительно был выбран этот режим.

Поддержание температуры Тп контура ГВС относительно заданной уставки, происходит за счет изменения потока теплоносителя через теплообменник посредством открытия или закрытия регулировочного клапана Кр контура теплосети, пропорционально управляющему воздействию.

Значение уставки температуры Тп контура ГВС может быть задано отдельно как для рабочих и праздничных дней, так для дня и ночи.

#### Аварии датчиков

Контроллер проверяет нахождение значений сигналов датчиков в допустимой рабочей области. Сообщение об аварии формируется в следующих случаях:

- значение температуры воды Тп выходит за границы рабочего диапазона;

- обрыв, замыкание датчика Тп.

В случае вышеназванных аварий регулятор не формирует сигналы управления клапаном Кр, задвижка клапана остается в том положении, которое занимала до аварии, замыкаются контакты реле «Авария», но насосы Нц1, Нц2 и продолжают работать в соответствии с заданным графиком переключения.

Восстановление нормальной работы регулятора происходит автоматически после устранения причины аварии.

Контроллер регистрирует в памяти в журнале событий отказы (обрыв и короткое замыкание).

### Аварии насосов

Регулятор формирует сообщение об аварии циркуляционного насоса Hц1 или Hц2 при поступлении сигнала от датчика перепада давления dPнц, установленного на насосах, с учетом времен задержки, или датчика сухого хода. В этом случае регулятор отключает неисправный насос Hц и включает другой насос Hц, формирует сообщение об аварии, в том числе, сигнал реле «Авария».

Также формируется сигнал об аварии в случае пропадание сигнала «Автомат/Авария», если установлен для него режим аварийного сигнала.

В случае отказа насосов регулирование температуры в контуре отопления сохраняется.

Сигнал аварии насосов сохраняется до вмешательства оператора. Для снятия этих сигналов необходимо кратковременно разомкнуть цепь «Автомат/Авария» или «Пуск».

В нормальном состоянии контакты реле «Авария» разомкнуты. В случае аварии регулятора эти контакты замыкаются.

### Индикация режима

Пример индикации режима «ГВС (1)» показан на рисунке 42.



Рисунок 42 - Пример индикации режима «ГВС (1)»

Датчики температуры отображаются в следующем виде.

## Таблица 56 – Отображение датчиков температуры на экране

| Изобра-<br>жение | Датчик | Описание                                         |
|------------------|--------|--------------------------------------------------|
| ſ                | Τп     | - значение температуры воды Тп в контуре ГВС, °С |
| ¥°               | -      | - уставка температуры воды Тп в контуре ГВС, °С  |

Состояние циркуляционного насоса Нц отображается в следующем виде.

| Изобра-<br>жение | Состояние                                                                    | Описание                                                                                                      |
|------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 1                | - насос отключен (номер насоса)                                              | - не разрешена работа насоса, цепь<br>входа «Автомат/Авария» разомкнута                                       |
| $\odot$          | - насос включен (номер насоса)                                               | - разрешена работа насоса, цепь входа                                                                         |
| 1                | - насос остановлен (номер насоса)                                            | редования работы насосов                                                                                      |
| 1                | - авария насоса (номер насоса),<br>сработал датчик перепада давле-<br>ния dP | - авария насоса определяется по сраба-<br>тыванию датчика перепада давления<br>«вход-выход», насос остановлен |
| 1                | - авария насоса (номер насоса),<br>сработал датчик сухого хода PS            | - авария насоса определяется по сраба-<br>тыванию датчика сухого хода на входе<br>насоса, насос остановлен    |

Таблица 57 – Отображение состояния циркуляционного насоса на экране

Состояние регулировочного клапана Кр отображается в следующем виде.

| Изобра-<br>жение | Состояние                              | Описание                               |
|------------------|----------------------------------------|----------------------------------------|
| $\times$         | - клапан закрыт полностью              | Угол поворота (ход штока) за-          |
|                  | - клапан открыт полностью или частично | движки клапана отображается числом в % |
|                  | - производиться юстировка клапана      |                                        |

Режим регулятора ГВС отображается в следующем виде.

| Ταθπαία 33 Οπουραπιζηάς ρεεγπλητορά τος πα эκραπι |
|---------------------------------------------------|
|---------------------------------------------------|

| Изобра-<br>жение | Состояние                                       | Описание                                                                                                                                                                                                                                                                                                                                                                          |
|------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>.</b>         | - регулятор ГВС включен и<br>нормально работает | Поддержание температуры в контуре ГВС, нор-<br>мальная работа, все датчики и насосы исправны                                                                                                                                                                                                                                                                                      |
|                  | - авария регулятора ГВС                         | Отказ датчика Тп или отказ насосов.<br>Замыкаются контакты реле «Авария».<br>Сигнал аварии запоминается контроллером и<br>требует вмешательства оператора. Для его сня-<br>тия необходимо кратковременно вручную снять<br>сигнал «Автомат/Авария» или «Пуск».                                                                                                                     |
|                  | - регулятор ГВС останов-<br>лен                 | Регулятор останавливается при размыкании<br>цепи сигнала «Пуск» вручную.<br>В случае останова регулятор выключает насосы,<br>клапан блокируется и остается в том положе-<br>нии, который предшествовал останову. Автома-<br>тическое поддержание температуры Тп не про-<br>изводится.<br>Выход из останова осуществляется вручную за-<br>мыканием контактов переключателя «Пуск». |
| - <b>Č</b> ,     | - летний режим системы<br>ГВС                   | Включен летний режим (вручную в сервисном меню): отключен насос, клапан закрыт.                                                                                                                                                                                                                                                                                                   |

# 13.2 Режим – Горячее водоснабжение (2)

Мнемосхема режима «ГВС (2)» показана на рисунке 43.



Рисунок 43 - Мнемосхема режима «ГВС (2)»

Режим «ГВС (2)» аналогичен режиму «ГВС (1)», но с одним отличием – в контуре ГВС установлен только один циркуляционный насос Нц1, и, следовательно, не используется чередование работы насосов.

Пример индикации режима «ГВС (2)» показан на рисунке 44.



Рисунок 44 - Пример индикации режима «ГВС (2)»

# 14 ВЕНТИЛЯЦИЯ

## 14.1 Режим – Вентиляция

Мнемосхема режима «Вентиляция» для регулирования температуры воздуха показана на рисунке 45.



Рисунок 45 - Мнемосхема режима «Вентиляция»

Регулятор переходит в режим «Вентиляция» при запуске работы замыканием цепи сигнала «Пуск», если предварительно был выбран этот режим.

Поддержание температуры Тп приточного воздуха в помещении относительно уставки, заданной по температурному графику относительно температуры наружного воздуха Тнв, происходит за счет изменения потока теплоносителя через водяной калорифер посредством открытия или закрытия регулировочного клапана Кр контура теплосети, пропорционально управляющему воздействию.

Значение уставки температуры приточного воздуха Тп может быть задано отдельно как для рабочих и праздничных дней, так и для дня и ночи.

Насос H1 и вентилятор B1 включены, если нет сигнала срабатывания датчика обмерзания калорифера Тз.

### Аварии датчиков

Регулятор контролирует нахождение значений сигналов датчиков в допустимой рабочей области. Сообщение об аварии формируется в следующих случаях:

- значение температуры воздуха Тнв выходит за границы рабочего диапазона;
- значение температуры воздуха Тп выходит за границы рабочего диапазона;
- обрыв, замыкание хотя бы одного датчика Тнв, Тп.

В случае вышеназванных аварий регулятор не формирует сигналы управления клапаном Кр, задвижка клапана остается в том положении, которое занимала до аварии, замыкаются контакты реле «Авария», выключается вентилятор В1, но насос Н1 продолжает работать.

Восстановление нормальной работы регулятора происходит автоматически после устранения причины аварии.

В случае отказа датчика обратной температуры теплосети Ттсо регулятор не формирует сообщения об аварии и продолжает работу по поддержанию температуры Tn.

Контроллер регистрирует в памяти в журнале событий отказы (обрыв и короткое замыкание) температурных преобразователей Тнв, Тп, Ттсо.

В случае срабатывании датчика обмерзания калорифера Тз, на дисплее выводится мигающее сообщение о включении защиты от замерзания воды, формируется сообщение об аварии (замыкаются контакты реле «Авария»), выключается вентилятор В1 и полностью открывается клапан Кр, включается насос Н1 для быстрого нагрева воды в калорифере. После того, как сигнал Тз станет неактивным, регулятор переходит в режим поддержания температуры Тп.

### Авария насоса

Регулятор формирует сообщение об аварии насоса H1 при поступлении сигнала от датчика перепада давления dPн, установленного на входе и выходе насоса, с учетом времен задержки. В этом случае регулятор отключает насос H1 и формирует сообщение об аварии, в том числе, сигнал реле «Авария». Регулятор может осуществить несколько попыток включения насоса, как задано в его настройках.

В случае отказа насоса регулирование температуры в контуре вентиляции сохраняется.

Сигнал аварии насоса сохраняется до вмешательства оператора. Для его снятия необходимо кратковременно разомкнуть цепь «Пуск».

### Авария вентилятора

Регулятор формирует сообщение об аварии вентилятора В1 при поступлении сигнала от датчика перепада давления dPв, установленного на входе и выходе вентилятора, с учетом времен задержки. В этом случае регулятор отключает вентилятор В1 и формирует сообщение об аварии, в том числе, сигнал реле «Авария». Регулятор может осуществить несколько попыток включения вентилятора, как задано в его настройках.

В случае отказа вентилятора регулирование температуры в контуре вентиляции сохраняется.

Сигнал аварии вентилятора сохраняется до вмешательства оператора. Для его снятия необходимо кратковременно разомкнуть цепь «Пуск».

В нормальном состоянии контакты реле «Авария» разомкнуты. В случае аварии регулятора эти контакты замыкаются.

### Индикация режима

Пример индикации режима «Вентиляция (9)» показан на рисунке 46.



Рисунок 46 - Пример индикации режима «Вентиляция (9)»

Датчики температуры отображаются в следующем виде.

|  | Таблица 60 – Отображение | датчиков | температуры | на экране |
|--|--------------------------|----------|-------------|-----------|
|--|--------------------------|----------|-------------|-----------|

| Изобра-<br>жение | Датчик | Описание                                                    |
|------------------|--------|-------------------------------------------------------------|
|                  | Тнв    | - значение температуры Тнв наружного воздуха (уличная), °С  |
| ſ                | Ттсо   | - значение температуры Ттсо теплоносителя обратная, °С      |
| ſ                | Τп     | - значение температуры Тп приточки воздуха (вентиляция), °С |
| Y                | -      | - уставка температуры приточки воздуха (вентиляция), °С     |

Состояние вентилятора отображается в следующем виде.

## Таблица 61 – Отображение вентилятора на экране

| Изобра-<br>жение | Состояние               | Описание                                                                                                   |
|------------------|-------------------------|------------------------------------------------------------------------------------------------------------|
| e,f              | - вентилятор остановлен | Контакты управляющего реле контроллера DO<br>разомкнуты                                                    |
| <b>~</b> ∤       | - вентилятор включен    | Контакты управляющего реле контроллера DO<br>замкнуты                                                      |
|                  | - авария вентилятора    | Авария вентилятора определяется по срабаты-<br>ванию датчика dPв перепада давления воздуха<br>«вход-выход» |

Состояние насоса отображается в следующем виде.

| Изобра-<br>жение        | Состояние        | Описание                                                                             |
|-------------------------|------------------|--------------------------------------------------------------------------------------|
| $\overline{\mathbb{O}}$ | - насос включен  | Контакты управляющего реле контроллера DO<br>замкнуты                                |
| 1                       | - насос выключен | Контакты управляющего реле контроллера DO<br>разомкнуты                              |
|                         | - авария насоса  | Авария насоса определяется по срабатыванию<br>датчика перепада давления «вход-выход» |

Состояние регулировочного клапана Кр отображается в следующем виде.

| Изобра-<br>жение | Состояние                              | Описание                                                                   |  |  |  |
|------------------|----------------------------------------|----------------------------------------------------------------------------|--|--|--|
| ×                | - клапан закрыт полностью              | Угол поворота (ход штока) за-<br>движки клапана отображается<br>числом в % |  |  |  |
|                  | - клапан открыт полностью или частично |                                                                            |  |  |  |
|                  | - производиться юстировка клапана      |                                                                            |  |  |  |

Таблица 63 – Отображение состояния регулировочного клапана на экране

Режим регулятора температуры воздуха отображается в следующем виде

| Изобра-<br>жение | Состояние                                                            | Описание                                                                                                                                                                                                                                                                                                                                                                                |
|------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •                | - регулятор температуры<br>воздуха включен и нор-<br>мально работает | Поддержание температуры Тп воздуха при-<br>точки, нормальная работа, все датчики и насосы<br>исправны                                                                                                                                                                                                                                                                                   |
|                  | - авария регулятора тем-<br>пературы воздуха                         | Отказ датчиков (кроме Ттсо) или отказ насоса<br>или отказ вентилятора.<br>Замыкаются контакты реле «Авария».<br>Сигнал аварии запоминается контроллером и<br>требует вмешательства оператора. Для его сня-<br>тия необходимо кратковременно вручную снять<br>сигнал «Пуск».                                                                                                             |
| ***              | - защита от замерзания<br>воды в калорифере                          | Срабатывание датчика замораживания. Включа-<br>ется принудительный прогрев калорифера (от-<br>крыт регулировочный клапан Кр), вентилятор<br>выключен.                                                                                                                                                                                                                                   |
|                  | - регулятор температуры<br>воздуха остановлен вруч-<br>ную           | Регулятор останавливается при размыкании<br>цепи сигнала «Пуск».<br>В случае останова регулятор выключает венти-<br>лятор, насос, клапан Кр блокируется и остается в<br>том положении, который предшествовал оста-<br>нову. Автоматическое поддержание темпера-<br>туры Тп не производится.<br>Выход из останова осуществляется вручную за-<br>мыканием контактов переключателя «Пуск». |

Таблица 64 – Отображение регулятора температуры воздуха на экране

| Режимы работы каналов ре-<br>гулирования контроллера | Канал выключен | Независимое отопление (1) | Независимое отопление (2) | Независимое отопление (3) | Независимое отопление (4) | Независимое отопление (5) | Зависимое отопление (1) | Зависимое отопление (2) | FBC(1) | FBC(2) | Вентиляция |
|------------------------------------------------------|----------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|-------------------------|-------------------------|--------|--------|------------|
| Канал 1                                              | Канал 2        |                           |                           |                           |                           |                           |                         |                         |        |        |            |
| Канал выключен                                       | +              | +                         | +                         | +                         | +                         | +                         | +                       | +                       | +      | +      | +          |
| Независимое отопление (1)                            | +              | +                         | +                         | +                         | +                         |                           | +                       | +                       | +      | +      | +          |
| Независимое отопление (2)                            |                | +                         | +                         | +                         | +                         |                           | +                       | +                       | +      | +      | +          |
| Независимое отопление (3)                            |                | +                         | +                         |                           |                           |                           |                         |                         | +      | +      |            |
| Независимое отопление (4)                            |                | +                         | +                         |                           |                           |                           |                         |                         | +      | +      |            |
| Независимое отопление (5)                            | +              |                           |                           |                           |                           |                           |                         |                         |        | +      |            |
| Зависимое отопление (1)                              | +              | +                         | +                         |                           |                           |                           |                         |                         | +      | +      |            |
| Зависимое отопление (2)                              |                | +                         | +                         |                           |                           |                           |                         |                         | +      | +      |            |
| ГВС(1)                                               |                | +                         | +                         | +                         | +                         |                           | +                       | +                       | +      | +      | +          |
| ГВС(2)                                               | +              | +                         | +                         | +                         | +                         | +                         | +                       | +                       | +      | +      | +          |
| Вентиляция                                           | +              |                           |                           |                           |                           |                           |                         |                         | +      | +      | +          |

## Приложение А. Режимы работы каналов регулирования

# Приложение Б. Настройка управления регулирующим клапа-

### ном

Качество управления, которое обеспечивает регулятор в значительной степени зависит от того, насколько хорошо выбранные параметры регулятора соответствуют свойствам системы отопления или ГВС. В идеальном случае, регулятор должен отработать ступенчатое возмущающее воздействие без выбросов, колебаний и достаточно быстро. В реальности, добиться таких результатов достаточно сложно и трудоемко в силу многих не учитываемых факторов. Поэтому коэффициенты регулятора подбираются опытным путем на каждом объекте с целью достижения приемлемого переходного процесса.

Коэффициент регулирования k и интервал управления Δt устанавливаются опытным путём на объекте по характеру поддержания температуры уставки. Эти параметры зависят от параметров системы: инерционности датчиков температуры (конструкции датчика, места установки и проч.) и регулирующего клапана Кр, инерционности системы отопления (вида установленного оборудования системы отопления, диаметра трубы, и проч.).

Признаком оптимальной настройки коэффициентов k и Δt регулятора является отсутствие значительных колебаний состояния клапана, т.е. более ±(3 - 4) °C при установившихся процессах. Δt будет различным для системы отопления и системы ГВС. В системе отопления основным возмущающим воздействием является температура наружного воздуха. Тнв изменяется медленно, поэтому Δt регулятора отопления может быть большим, чем для ГВС, где все процессы более быстрые. С другой стороны, малые значения Δt регулятора системы отопления могут вызывать значительные колебания переходного процесса.

Настройка управления клапаном заключается в задании следующих параметров.

### Б.1 Коэффициент k

Коэффициента масштабирования k влияет на величину выходного сигнала, управляющего клапаном. Рекомендуемое значение k = 0,010.

### Б.2 Интервал управления Δt

Интервал управления Δt определяет, как часто контроллер будет формировать управляющее воздействие. Чем более инерционная система, тем интервал управления Δt желательно увеличить. Допустимые значения – (1...10000) секунд. Заводская настройка - 10 секунд. Для систем ГВС рекомендуется (1 – 2) секунды. Для систем отопления – (5 – 20) секунд.

Для более точного подбора интервала Δt необходимо на объекте измерить время реакции системы отопления или ГВС на ступенчатое воздействие на регулирующий клапан. Для этого вручную изменить положение регулирующего клапана в небольших пределах, например, на 30 %, включить секундомер, и, в момент начала изменения температуры Tп, выключить секундомер. Этот временной интервал будет характеризовать инерционность системы. Значение Δt должно быть не менее времени инерционности.

### Б.З Число шагов клапана

Число шагов клапана влияет на точность позиционирования регулирующего клапана. Увеличение числа шагов приводит к уменьшению величины каждого шага (перемещения плунжера задвижки), что позволяет более точно поддерживать температуру Tn.

Допустимые значения (10 – 1000) шагов. Заводская настройка - 100 шагов. Для систем отопления и ГВС рекомендуется (100 – 300) шагов. Чем больше время хода клапана тем больше требуется значение "числа шагов" для более точного позиционирования клапана.

### Б.4 Полное время хода клапана

За время полного хода клапан перемещается от полностью закрытого состояния до полностью открытого состояния. Значение времени полного хода берется из паспорта используемого регулирующего клапана в секундах.